Trading Toolbox™
User's Guide

A

MATLAB

R2016b <} MathWorks

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Trading Toolbox™ User's Guide
© COPYRIGHT 2013-2016 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

Revision History

March 2013 Online only New for Version 1.0 (Release 2013a)
September 2013 Online only Revised for Version 2.0 (Release 2013b)
March 2014 Online only Revised for Version 2.1 (Release 2014a)
October 2014 Online only Revised for Version 2.1.1 (Release 2014b)
March 2015 Online only Revised for Version 2.2 (Release 2015a)
September 2015 Online only Revised for Version 2.2.1 (Release 2015b)
March 2016 Online only Revised for Version 3.0 (Release 2016a)

September 2016 Online only Revised for Version 3.1 (Release 2016b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Getting Started
Trading Toolbox Product Description 1-2
Key Features i, 1-2
Installation 1-3
Bloomberg 1-3
CQG ... e 1-3
FIX Flyer e 1-3
Interactive Brokers 14
Trading Technologies 14
Trading System Providers 1-6
Supported Providers 1-6
Connection Requirements 1-6
Create an Order Using IB Trader Workstation 1-8
Create an Order Using CQG 1-12
Create an Order Using Bloomberg EMSX 1-14
Create an Order Using X TRADER 1-17
Create an Order Using FIX Flyer 1-20
Writing and Running Custom Event Handler Functions with
Bloomberg EMSX 1-25
Write a Custom Event Handler Function 1-25
Run a Custom Event Handler Function 1-25
Workflow for Custom Event Handler Function 1-26

iii

iv

Writing and Running Custom Event Handler Functions with

Interactive Brokers 1-28
Write a Custom Event Handler Function 1-28

Run a Custom Event Handler Function 1-28
Workflow for Custom Event Handler Function 1-29
Workflow Models

Workflow for Bloomberg EMSX 2-2
Workflows for Trading Technologies X_TRADER 2-4
Workflow for Interactive Brokers 2-6
Request Interactive Brokers Market Data 2-6
Create Interactive Brokers Orders 2-7
Request Interactive Brokers Informational Data 2-7
Workflow for CQG 2-8
Workflow for FIX Flyer 2-10
Create a FIX Messageccuiiininnnn... 2-10
Request Data and Create Orders Using FIX Messages 2-10
Receive a FIX Message, 2-11

Transaction Cost Analysis

3

Analyze Trading Execution Results 3-2
Post-Trade Analysis Metrics Definitions 3-6
Implementation Shortfall 3-6
Alpha Capture 3-7
Benchmark Costs 3-7
Broker Value Add 3-7
ZoSCOTE o oottt e e e 3-7

Contents

Kissell Research Group Example Data Set Description 3-9

TradeData Variable Descriptions 3-9
PortfolioData Variable Descriptions 3-10
PostTradeData Variable Descriptions 3-11
TradeDataBackTest Variable Descriptions 3-14
TradeDataStressTest Variable Descriptions 3-15
TradeDataPortOpt Variable Descriptions 3-16
CovarianceData Table Description 3-17
Conduct Sensitivity Analysis to Estimate Trading Costs . . 3-19
Estimate Portfolio Liquidation Costs 3-23
Optimize Percentage of Volume Trading Strategy 3-28
Optimize Trade Time Trading Strategy 3-32
Optimize Trade Schedule Trading Strategy 3-36
Estimate Trading Costs for Collection of Stocks 3-41
Conduct Back Test on Portfolio 3-43
Conduct Stress Test on Portfolio 3-46
Liquidate Dollar Value from Portfolio 3-52
Optimize Long Portfolio 3-58

Sample Code for Workflows

4

Listen for X_TRADER Price Updates 4-2
Listen for X_TRADER Price Market Depth Updates 4-4
Submit X TRADER Orders 4-8
Create and Manage a Bloomberg EMSX Order 4-12

Create and Manage a Bloomberg EMSX Route 4-16

Manage a Bloomberg EMSX Order and Route 4-21
Create and Manage an Interactive Brokers Order 4-26
Request Interactive Brokers Historical Data 4-32
Request Interactive Brokers Real-Time Data 4-35
Create Interactive Brokers Combination Order 4-39
Create CQG Oxders 4-45
Request CQG Historical Data 4-51
Request CQG Intraday Tick Data 4-54
Request CQG Real-Time Data 4-58

Functions — Alphabetical List

3|

vi Contents

Getting Started

* “Trading Toolbox Product Description” on page 1-2

+ “Installation” on page 1-3

+ “Trading System Providers” on page 1-6

* “Create an Order Using IB Trader Workstation” on page 1-8
* “Create an Order Using CQG” on page 1-12

+ “Create an Order Using Bloomberg EMSX” on page 1-14

* “Create an Order Using X_TRADER” on page 1-17

+ “Create an Order Using FIX Flyer” on page 1-20

+ “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-25

* “Writing and Running Custom Event Handler Functions with Interactive Brokers” on
page 1-28

1 Getting Started

Trading Toolbox Product Description

Access prices, analyze transaction costs, and send orders to trading systems

Trading Toolbox provides functions for analyzing transaction costs, accessing trade and
quote pricing data, defining order types, and sending orders to financial trading markets.

The toolbox lets you integrate streaming and event-based data into MATLAB®, enabling
you to develop financial trading strategies and algorithms that analyze and react to the
market in real time. You can build algorithmic or automated trading strategies that work
across multiple asset classes, instrument types, and trading markets while integrating
with industry-standard or proprietary trade execution platforms.

With Trading Toolbox you can analyze and estimate transaction costs before placing an
order, as well as attribute costs post-trade. You can analyze transaction costs associated
with market impact, timing, liquidity, and price appreciation, and use cost curves to
minimize transaction costs for single assets or for a portfolio of assets.

Trading Toolbox lets you access real-time streams of tradable instrument data, including
quotes, volumes, trades, market depth, and instrument metadata. You can define order
types and specify order routing and filling procedures.

Key Features

* Market impact modeling and cost curve generation using Kissell Research Group
models

* Trading cost, sensitivity, and post-trade execution analysis

+ Access to current, intraday, event-based, and real-time tradable instrument data

+ Data filtering by instrument and exchange

+ Definable order types and execution instructions

* Access to FIX-compliant trading systems using FIX Flyer™ Engine

* Support for Bloomberg®” EMSX, Trading Technologies® X_TRADER", CQG"
Integrated Client, and Interactive Brokers® TWS

Installation

Installation

In this section...

“Bloomberg” on page 1-3
“CQG” on page 1-3
“FIX Flyer” on page 1-3

“Interactive Brokers” on page 1-4

“Trading Technologies” on page 1-4

Bloomberg

To install Bloomberg EMSX from Bloomberg L.P., find the latest installation files at
http://www.bloomberg.com. You need a Bloomberg license to install and run Bloomberg
EMSX.

QG

To install CQG, find the latest installation files at http://www.cqg.com. You need a CQG
license to install and run CQG.

The Trading Toolbox no longer supports connection using a 32-bit version of

MATLAB. To configure CQG to work with a 64-bit version of MATLAB, see http://
www.mathworks.com/matlabcentral/answers/223461-how-can-i-set-up-a-cqg-connection-
using-the-trading-toolbox-with-64-bit-version-of-matlab.

FIX Flyer

1 Install FIX Flyer. Find the latest installation files at the FIX Flyer Download Portal.
2 Download the zip file that contains the installation JAR files. Unzip the file.

3 Search the folders for the JAR file Fix-flyer.jar and the folder named core. The
JAR file is located in the folder where FIX Flyer is installed. The JAR file points to a
folder named core that contains the other required JAR files.

4 Add the JAR file Fix-Flyer . jar to the static Java® class path. Edit the
Javaclasspath.txt file and enter the path to the file. For example, . .\FIXFlyer
\fix-Flyer-5.0_.1\devkit\lib\fix-Flyer. jar. This file path assumes an
installation of FIX Flyer version 5.0.1.

1-3

http://www.bloomberg.com
http://www.cqg.com
http://www.mathworks.com/matlabcentral/answers/223461-how-can-i-set-up-a-cqg-connection-using-the-trading-toolbox-with-64-bit-version-of-matlab
http://www.mathworks.com/matlabcentral/answers/223461-how-can-i-set-up-a-cqg-connection-using-the-trading-toolbox-with-64-bit-version-of-matlab
http://www.mathworks.com/matlabcentral/answers/223461-how-can-i-set-up-a-cqg-connection-using-the-trading-toolbox-with-64-bit-version-of-matlab
http://downloads.fixflyer.com

1 Getting Started

1-4

If you are running Linux® or Mac, the JAR file path has a different format. For
example, /FIXFlyer/fix-flyer-5.0.1/devkit/lib/fix-flyer._jar.

For details about modifying the static Java class path, see “Bring Java Classes into
MATLAB Workspace”.

You need a FIX Flyer license to install and run FIX Flyer.

Interactive Brokers

1 Download and install the IB Trader Workstation®™ Desktop Trading Client. Find the
latest installation files at https://www.interactivebrokers.com/en/index.php?f=552.

2 Download and install the Interactive Brokers API software. Find the latest
installation files at http://interactivebrokers.github.io/.

3 Configure IB Trader Workstation to enable connections. Follow these steps in IB

Trader Workstation:

a Select File > Global Configuration under Application Settings.
b Select API > Settings on the left side.

¢ Select Enable ActiveX and Socket Clients on the right side.

d Click Apply, then OK.

e Restart MATLAB and connect to IB Trader Workstation.

You need an Interactive Brokers license to install and run Interactive Brokers.

Trading Technologies

To install Trading Technologies, find the latest installation files at http://
www.tradingtechnologies.com. You need a Trading Technologies license to install and
run Trading Technologies.

See Also

cqg | emsx | FixFlyer | ibtws | xtrdr

Related Examples
. “Create an Order Using Bloomberg EMSX” on page 1-14

https://www.interactivebrokers.com/en/index.php?f=552
http://interactivebrokers.github.io/
http://www.tradingtechnologies.com
http://www.tradingtechnologies.com

Installation

“Create an Order Using CQG” on page 1-12

“Create an Order Using FIX Flyer” on page 1-20

“Create an Order Using IB Trader Workstation” on page 1-8
“Create an Order Using X_TRADER” on page 1-17

1-5

1 Getting Started

Trading System Providers

1-6

In this section...

“Supported Providers” on page 1-6

“Connection Requirements” on page 1-6

Supported Providers

This toolbox supports connections to financial trading systems provided by the following
corporations:

+ Bloomberg EMSX from Bloomberg L.P. (http://www.bloomberg.com)

Note: Only the Bloomberg Desktop API is supported.
+ CQG (http://www.cqg.com)
+ FIX Flyer (http://www.fixflyer.com/)
+ IB Trader Workstation from Interactive Brokers (http://www.interactivebrokers.com)

Note: 1B Trader Workstation versions 9.69 and 9.7 and later are supported.

+ X_TRADER from Trading Technologies (http://www.tradingtechnologies.com)

See the MathWorks® website for the system requirements for connecting to these trading
systems.
Connection Requirements

To connect to these trading systems, additional requirements apply. The following data
service providers require you to install proprietary software on your PC:

* Bloomberg EMSX

Note: You need the Bloomberg Desktop software license for the host on which Trading
Toolbox and MATLAB software are running.

- CQG

http://www.bloomberg.com
http://www.cqg.com
http://www.fixflyer.com/
http://www.interactivebrokers.com
http://www.tradingtechnologies.com
http://www.mathworks.com/products/trading/requirements.html

Trading System Providers

* FIX Flyer
» Interactive Brokers IB Trader Workstation

* Trading Technologies X_TRADER
You must have a valid license for required client software on your machine.

For more information about how to obtain required software, contact your trading system

sales representative.

1 Getting Started

Create an Order Using IB Trader Workstation

1-8

This example shows how to connect to the IB Trader Workstation, retrieve historical
data, create a market order, and specify a different instrument.

Run the IB Trader Workstation Application

Ensure the IB Trader Workstation application is running, and that API connections are
enabled. Follow these steps in IB Trader Workstation.

1 To open the Trader Workstation Configuration (Simulated Trading) dialog box, select
File > Global Configuration.

2 Select API > Settings.
3 Ensure that the Enable ActiveX and Socket Clients check box is selected.

Connect to the IB Trader Workstation.

Connect to the IB Trader Workstation and create connection ib using the local host and
default port number 7496.

ib = ibtws("",7496);

When the Accept incoming connection attempt message appears in the IB Trader
Workstation, click Yes.

Retrieve Historical and Current Data

Create the IB Trader Workstation 1Contract object ibContract. This object denotes

the security. Here, retrieve data for Microsoft® MSFT stock. Specifying SMART as the
exchange lets Interactive Brokers determine which venue to use for data retrieval. To
clarify any ambiguity, set the primary exchange for the destination NASDAQ. To retrieve
dollar-denominated stock, set the currency type to USD. Setting currency type is useful
when stocks are dual-listed or multi-listed across different jurisdictions.

ibContract = ib.Handle.createContract;
ibContract.symbol = "MSFT";
ibContract.secType = "STK";
ibContract.exchange = "SMART";
ibContract.primaryExchange = "NASDAQ";
ibContract.currency = "USD";

Define the period for which you need data, for example, the last 20 business days,
excluding today.

Create an Order Using IB Trader Workstation

bizDayConvention = 13; % 1.e. BUS/252
startDate = daysadd(today,-20,bizDayConvention);
endDate = daysadd(today,-1, bizDayConvention);

This code uses the daysadd function from Financial Toolbox™ to compute the
appropriate start and end dates.

Retrieve historical data for the last 20 business days.

histTradeData = history(ib, ibContract,startDate,endDate);

Note: The history function accepts additional parameters that let you obtain other
historical data such as option-implied volatility, historical volatility, bid prices, ask
prices, or midpoints. If you do not specify anything, the default data returned are last
traded prices.

Retrieve current price data from the contract.
currentData = getdata(ib, ibContract)

currentData =

LAST_PRICE: 34.93
LAST_SIZE: 1
VOLUME: 66113
BID_PRICE: 34.92
BID_SIZE: 157
ASK_PRICE: 34.93
ASK_SIZE: 129

Create a Trade Market Order

The IB Trader Workstation supports various order types, including basic types such as
limit orders, stop orders, and market orders. For this example, set up a stock contract for
Microsoft stock. After setting the order type as MKT, then specify the action, in this case
BUY, and the total quantity to trade.

ibMktOrder = ib.Handle.createOrder;
ibMktOrder.action = "BUY";
ibMktOrder.totalQuantity = 100;
ibMktOrder.orderType = "MKT";

Set a unique order identifier, and send the orders to Interactive Brokers.

1 Getting Started

id = orderid(ib);

result = createOrder(ib, ibContract, ibMktOrder, id)

result

STATUS: "Filled"
FILLED: 100
REMAINING: O
AVG_FILL_PRICE: 34.93
PERM_ID: "456471585"
PARENT_ID: O
LAST _FILL_PRICE: 34.93
CLIENT_ID: O
WHY HELD: "*

Specify a Different Instrument

You can trade various instruments using the IB Trader Workstation API, including
equities, futures, options, futures options, and foreign currencies. Here, use the E-mini
Standard and Poor’s 500 futures contract on the CME Globex with a December 2013
expiry. Specify the symbol as ES, the security type as a futures contract FUT, the expiry
in a YYYYMM date format, the exchange as GLOBEX, and the currency as USD.

ibFutures = i1b.Handle.createContract;
ibFutures.symbol = "ES";
ibFutures.secType = "FUT";
ibFutures.expiry = "201312%; % Dec 2013
ibFutures.exchange “GLOBEX";
ibFutures.currency "UsSD*";

Close the Connection

After retrieving data and sending orders, close the IB Trader Workstation connection ib.

close(ib)

See Also

close | createOrder | getdata | history | ibtws

Related Examples

. “Create Interactive Brokers Combination Order” on page 4-39

1-10

Create an Order Using IB Trader Workstation

. “Create and Manage an Interactive Brokers Order” on page 4-26
. “Request Interactive Brokers Historical Data” on page 4-32

. “Request Interactive Brokers Real-Time Data” on page 4-35

More About

. “Workflow for Interactive Brokers” on page 2-6

External Websites

. http://www.interactivebrokers.com/en/software/api/api.htm

1-11

http://www.interactivebrokers.com/en/software/api/api.htm

1 Getting Started

Create an Order Using CQG

This example shows how to connect to CQG and create a market order.
Connect to CQG.

C = Cqg;

Establish event handlers.

Start the CQG session. Set up event handlers for instrument subscription, orders, and
associated events.

startUp(c)

streamEventNames = {" InstrumentSubscribed”,
"InstrumentChanged”, " IncorrectSymbol "} ;

for i = 1:length(streamEventNames)
registerevent(c.Handle,{streamEventNames{i}, -
@(varargin)cqgrealtimeeventhandler(varargin{:})})
end
orderEventNames = {"AccountChanged”,"OrderChanged”, "AllOrdersCanceled"};
for i = 1:length(orderEventNames)
registerevent(c.Handle,{orderEventNames{i}, -
@(varargin)cqgordereventhandler(varargin{:})})
end
Subscribe to the instrument.

Subscribe to a security tied to the EURIBOR.

realtime(c,"F.US_IE")
pause(2)

Create the CQGInstrument object.

To use the instrument for creating an order, import the instrument name
cqglnstrumentName into the current MATLAB workspace. Then, create the
CQGInstrument object cqglnst.

cqglnstrumentName = evalin(“base”, "cqglnstrument®);

1-12

Create an Order Using CQG

cqglnst = c.Handle.Instruments. ltem(cqglnstrumentName);
Set up account credentials.

Set the CQG flags to enable account information retrieval.

c.Handle.set("AccountSubscriptionLevel ", aslNone®);
c.Handle.set("AccountSubscriptionLevel ", "aslAccountUpdatesAndOrders*™);
pause(2)

accountHandle = c.Handle.Accounts. ItemBylIndex(0);

Create the market order.

Create a market order that buys one share of the subscribed security cqglnst using the
account credentials accountHandle.

orderType = 1; % Market order flag

quantity = 1; % Positive quantity is Buy, negative is Sell
oMarket = createOrder(c,cqglnst,orderType,accountHandle,quantity);
oMarket.Place

Close the connection.

close(c)

See Also

close | cqg | createOrder | realtime | startUp

Related Examples

. “Create CQG Orders” on page 4-45

. “Request CQG Historical Data” on page 4-51

. “Request CQG Intraday Tick Data” on page 4-54
. “Request CQG Real-Time Data” on page 4-58

More About
. “Workflow for CQG” on page 2-8

External Websites
. CQG API Reference Guide

1-13

http://partners.cqg.com/api-resources/technical-documentation

1 Getting Started

Create an Order Using Bloomberg EMSX

This example shows how to connect to Bloomberg EMSX and create and route a market
order.

For details about connecting to Bloomberg EMSX and creating orders, see the EMSX API
Programmer’s Guide.

Connect to Bloomberg EMSX

1 If you are using emsx for the first time, you need to install a Java archive file from
Bloomberg for emsx and other Bloomberg commands to work correctly.

If you already have blpapi3. jar downloaded from Bloomberg, you can find it in
your Bloomberg folders at . .\bIp\api\APIv3\JavaAPI\lib\blpapi3._jaror ..
\blIp\api\APIv3\JavaAPI\v3._x\lib\blpapi3.jar. If you have blpapi3.jar,
go to step 3.

If blpapi3.jar is not downloaded from Bloomberg, then download it as follows:

a In your Bloomberg terminal, type WAP1 {GO} to open the API Developer’s Help
Site screen.

b Click API Download Center, then click Desktop API.

¢ After downloading blpapi3.jar on your system, add it to the MATLAB Java
class path using javaaddpath.

You need to do this for every session of MATLAB. To avoid repeating this

at every session, add javaaddpath to your startup.m file or add the full
path for blpapi3. jar to your javaclasspath.txt file. For details about
Javaclasspath.txt, see “Java Class Path”. For details about editing your
startup.m file, see “Startup Options in MATLAB Startup File”.

2 Connect to the Bloomberg EMSX test service.

c = emsx("//blp/emapisvc_beta®)
cC =
emsx with properties:

Session: [1x1 com.bloomberglp.blpapi.Session]
Service: [1x1 com.bloomberglp.blpapi.impl.aQ]

1-14

Create an Order Using Bloomberg EMSX

Ipaddress: "localhost”
Port: 8194

MATLAB returns c as the connection to the Bloomberg EMSX test service with the
following:

* Bloomberg EMSX session object

* Bloomberg EMSX service object

+ IP address of the machine running the Bloomberg EMSX test service

* Port number of the machine running the Bloomberg EMSX test service

Create the market order request

Create an order request structure order for a buy market order of 400 shares of IBM®.
Specify the broker as EF1X, use any hand instruction, and set the time in force to DAY.

order .EMSX_ORDER_TYPE = “MKT";
order _EMSX_SIDE = "BUY";

order .EMSX_TICKER = "IBM";
order .EMSX_AMOUNT = int32(400);
order .EMSX_BROKER = "EFIX";

order _.EMSX_HAND_INSTRUCTION = "ANY~";
order _.EMSX_TIF = "DAY";

Create and route the market order

Create and route the market order using the Bloomberg EMSX connection ¢ and order
request structure order.

events = createOrderAndRoute(c,order);
events =
EMSX_SEQUENCE: 335877

EMSX_ROUTE_ID: 1
MESSAGE: "Order created and routed”

The default event handler processes the events associated with creating and routing the
order. createOrderAndRoute returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier

1-15

1 Getting Started

1-16

* Bloomberg EMSX message

Close the Bloomberg EMSX connection

close(c)

See Also

close | createOrderAndRoute | emsx

Related Examples

. “Create and Manage a Bloomberg EMSX Order” on page 4-12
. “Create and Manage a Bloomberg EMSX Route” on page 4-16
. “Manage a Bloomberg EMSX Order and Route” on page 4-21

More About
. “Workflow for Bloomberg EMSX” on page 2-2

Create an Order Using X_TRADER

Create an Order Using X_TRADER

This example shows how to connect to Trading Technologies X_TRADER and create a
market order.

Connect to Trading Technologies X_TRADER.
c = xtrdr;
Create an instrument for a contract.

Create an instrument for a contract of CAISO NP15 EZ Gen Hub 5 MW Peak Calendar-
Day Real-Time LMP Futures with an expiration date of August 2014 on the Chicago
Mercantile Exchange.

createlnstrument(c, "Exchange®, "CME", "Product”, "2F", ...
"ProdType*®, "Future®, "Contract”, "Augl4”, ...
"Alias”, "SubmitOrderInstrument3®)

Register an event handler for the order server.

Register an event handler to check the order server status.

sExchange = c.Instrument.Exchange;
c.Gate.registerevent({"OnExchangeStateUpdate™, ...
@(varargin)ttorderserverstatus(varargin{:},sExchange)})

Create an order set and set order properties.

Create an empty order set. Then, set order set properties. Setting the first property

to true (1) enables the X_TRADER API to send order rejection notifications. Setting

the second property to true (1) enables the X_TRADER API to add order pairs for all
order updates to the order tracker list in this order set. Setting the third property to
ORD_NOTIFY_NORMAL sets the X_TRADER API notification mode for order status events

to normal.

createOrderSet(c)

c.OrderSet(1) .EnableOrderRejectData = 1;
c.OrderSet(1) .EnableOrderUpdateData = 1;

c.OrderSet(1) .0rderStatusNotifyMode “ORD_NOTIFY_NORMAL* ;

Set position limit checks.

c.OrderSet(1).Set("NetLimits",false)

1-17

1 Getting Started

1-18

Register event handlers for order status.

Register event handlers to track events associated with the order status.

registerevent(c.OrderSet(1),{"OnOrderFilled", ...
@(varargin)ttorderevent(varargin{:},c)})
registerevent(c.OrderSet(1l),{"OnOrderRejected”, . ..
@(varargin)ttorderevent(varargin{:},c)})
registerevent(c.OrderSet(1),{"OnOrderSubmitted”, ...
@(varargin)ttorderevent(varargin{:},c)})
registerevent(c.OrderSet(1),{"OnOrderDeleted”, . ..
@(varargin)ttorderevent(varargin{:},c)})

Enable order submission.

Open the instrument for trading and enable the X_TRADER API to retrieve market
depth information when opening the instrument.

c.OrderSet(1) .0pen(1)

Build an order profile with the existing instrument.

orderProfile = createOrderProfile(c, " Instrument”,c. Instrument(l));
Set the customer default property.

Assign the customer defaults for trading an instrument.

orderProfile.Customer = "<Default>";
Set up the order profile as a market order.

Set up the order profile as a market order for buying 225 shares.

orderProfile._Set("BuySell~, “"Buy”)
orderProfile._Set("Qty~,"225%)
orderProfile._Set("OrderType®,"M")

Check the order server status.

nCounter = 1;

while ~exist("bServerUp®,“var®) && nCounter < 20
% bServerUp is created by ttorderserverstatus
pause(1)
nCounter = nCounter + 1;

end

Create an Order Using X_TRADER

Verify the order server availability and submit the order.

if exist("bServerUp®,"var®) && bServerUp
% Submit the order
submittedQuantity = c.OrderSet(1l).SendOrder(orderProfile);
disp(["Quantity Sent: " num2str(submittedQuantity)])
else
disp("Order server is down. Unable to submit order.")
end

The X_TRADER API submits the order to the exchange and returns the number of
contracts sent for lot-based contracts or the flow quantity sent for flow-based contracts in
the output argument submittedQuantity.

Close the connection.

close(c)

See Also

close | createlnstrument | createOrderProfile | createOrderSet | xtrdr

Related Examples

. “Listen for X_TRADER Price Updates” on page 4-2

. “Listen for X_TRADER Price Market Depth Updates” on page 4-4
. “Submit X_TRADER Orders” on page 4-8

More About
. “Workflows for Trading Technologies X_TRADER” on page 2-4

External Websites

. https://developer.tradingtechnologies.com/x_trader-api

1-19

https://developer.tradingtechnologies.com/x_trader-api

1 Getting Started

Create an Order Using FIX Flyer

1-20

This example shows how to create a FIX Flyer connection, process event data for sending
FIX messages, and submit various orders using FIX messages.

FIX is a financial industry protocol that facilitates low latency trading. For details about
the FIX protocol, see FIX Trading Community.

Connect to FIX Flyer

Import the FIX Flyer Java libraries.

import flyer.apps.™;
import flyer.apps.FlyerApplicationManagerFactory.*;
import flyer.core.session.*;

Create the FIX Flyer Engine connection C using these arguments:

* User name username

+ Password password

* IP address ipaddress

* Port number port

* Order information port number orderport
username = “guest”;

password "guest”;

ipaddress = "example.fixcomputeserver.com”;

port = 12001;
orderport = 13001;

c = fixflyer(username,password, ipaddress,port,orderport);
Add a Listener and Subscribe to FIX Sessions

Add the FIX Flyer event listener to the FIX Flyer Engine connection c. To listen for and
display the FIX Flyer Engine event data in the Workspace browser, use the sample event
handling listener FixExampleListener. To access the code for the listener, enter edit
fixExampleListener.m. Or, to process the event data in another way, you can write a
custom event handling listener function. For details, see “Create Functions in Files”.

FTixExampleListener handles the FIX Flyer Engine events. € denotes these events.
You can specify e as any letter.

http://www.fixtradingcommunity.org/

Create an Order Using FIX Flyer

Ih = addListener(c,@(~,e)fixExampleListener(e,c));
TixExampleListener returns a handle to the listener Ih.

Subscribe to FIX sessions and set up the FIX Flyer Application Manager. Register with
the FIX Flyer session. Connect the FIX Flyer Application Manager to the FIX Flyer
Engine and start the internal receiving thread.

c.SessionlD = flyer.core.session.SessionID("Alpha”, ...

"Beta®,"FIX.4.4%);
c.FlyerApplicationManager.setlLoadDefaul tDataDictionary(false);
c.FlyerApplicationManager.registerFIXSession(...

flyer.apps.FixSessionSubscription(...

c.SessionlD, true,0));

(¢}

_FlyerApplicationManager.connect;
c.FlyerApplicationManager.start;

Create FIX Messages

Create two FIX messages using a structure array order. Each structure in the array
represents one FIX message. Both messages denote a sell side transaction for 1000 IBM
shares. The order type is a previously quoted order. The order handling instruction is a
private automated execution. The order transaction time is the current moment. The FIX
protocol version is 4.4.

The field MsgType is set to "D" to denote a new order.

order _BeginString{l,1} = "FIX.4.4";

order .CLOrdId{1,1} = "338%;

order_Side{l,1} = "2°;

order_TransactTime{l,1} = datestr(now);

order .OrdType{1,1} = "D";

order _Symbol{1,1} = "IBM";

order _HandlInst{1,1} = "1°%;

order _MsgType{1,1} = "D";

order _OrderQty{1,1} = "1000";

order _HeaderFields{1,1} = {"OnBehalfOfCompID", " TRADER"};

order _.BodyFields{1,1} = {"NoPartylDs","3"; ...
"PartylID","1%; ...
"PartyRole”,"BBVA"; ...
"PartylID","1%; ...
"PartyRole”,"CVGX"; ...
"PartylID","1%; ...
"PartyRole”, "GSAM"};

order _BeginString{2,1} = "FIX.4.4";

order CLOrdId{2,1} = "339%;

order_Side{2,1} = "2°;

1-21

1 Getting Started

1-22

order_TransactTime{2,1} = datestr(now);

order .OrdType{2,1} = "D";

order _Symbol{2,1} = "IBM";

order _HandlInst{2,1} = "1%;

order _MsgType{2,1} = "D";

order .OrderQty{2,1} = "1000";

order _HeaderFields{2,1} = {"OnBehalfOfCompID", " TRADER"};

order .BodyFields{2,1} = {"NoPartylDs","3"; -
"PartylID","1%; ...
"PartyRole”, "BBVA";
"PartylID","1%; ...
"PartyRole”, "CVGX";
"PartylID","1%; ...
"PartyRole”, "GSAM"};

Send FIX Messages

Send the FIX messages using the FIX Flyer Engine connection cC.

status = sendMessage(c,order);

status contains a logical zero for a successful message delivery.

Return Order Information

Return and display the order information o for all orders.

o = orderiInfo(c);
openvar("o")

The Variables editor displays the contents of 0.

To replace an order, create a FIX message replace with an updated quantity of 3378
shares. The field MsgType is set to "G" to denote a replace order.

replace.BeginString{1,1} = "FIX.4.4";
replace.CLOrdId{1,1} = "338 REPLACE";
replace.origClOrdld{1,1} = "3387;
replace.Symbol{1,1} = "IBM";
replace.OnBehal fOfCompID{1,1} = "TRADER";
replace.OrdType{1,1} = "D";
replace.OrderQty{1,1} = "3378";
replace.MsgType{1,1} = "G";
replace.Text{1,1} = "REST APl REPLACE";

Create an Order Using FIX Flyer

Send the FIX message. To see the replaced order, retrieve and display the order
information.

status = sendMessage(c,replace);

o = orderiInfo(c);
openvar("o")

The Variables editor displays the contents of 0.

To cancel the order, create a FIX message cancel with order number 338. The field
MsgType is set to "F" to denote a cancel order.

cancel .BeginString{l1,1} = "FIX.4.4%;
cancel .CLOrd1d{1,1} = "338_CANCEL";
cancel .origClOrdld{1,1} = "338 REPLACE";
cancel .Symbol{1,1} = "IBM~;

cancel .OnBehal fOfCompID{1,1} = "TRADER";
cancel .OrdType{1,1} = "D";

cancel MsgType{1,1} = "F~;

cancel .Text{1,1} = "REST API CANCEL";

Send the FIX message. To see the canceled order, retrieve and display the order
information.

status = sendMessage(c,cancel);

o = orderiInfo(c);
openvar(“o")

The Variables editor displays the contents of 0.
Receive a FIX Message

Receive a FIX message response from the FIX Flyer Engine. The sample event handling
listener FixExampleListener returns the raw FIX message in the table FixResponse.
Display the first three columns of fFixResponse.

FixResponse(:,1:3)
ans =

BeginString BodyLength MsgType

1-23

1 Getting Started

"FIX.4.4" "219* "8*

The column names of FixResponse contain FIX tag names from the returned raw FIX
message. The data in the columns contain the values of the returned raw FIX message.

Close the FIX Flyer Connection

Close the FIX Flyer Engine connection.

close(c)

See Also

addListener | close | fixFlyer | orderInfo | sendMessage

More About
. “Workflow for FIX Flyer” on page 2-10

External Websites
. FIX Trading Community

1-24

http://www.fixtradingcommunity.org/

Writing and Running Custom Event Handler Functions with Bloomberg EMSX

Writing and Running Custom Event Handler Functions with
Bloomberg EMSX

In this section...

“Write a Custom Event Handler Function” on page 1-25

“Run a Custom Event Handler Function” on page 1-25

“Workflow for Custom Event Handler Function” on page 1-26

Write a Custom Event Handler Function

You can process events related to any Bloomberg EMSX orders and routes by writing a
custom event handler function to use with Trading Toolbox. For example, you can plot
the changes in the number of shares routed. Follow these tasks to write a custom event

handler.

1 Choose the events that you want to process, monitor, or evaluate.

2 Decide how the custom event handler function processes these events.

3 Determine the input and output arguments for the custom event handler function.

4 Write the code for the custom event handler function.

For details, see “Create Functions in Files”. For a code example of an event handler
function, see the function processEventToBlotter in the emsxOrderBlotter.m file.

Run a Custom Event Handler Function

You can run the custom event handler function by using timer. Specify the custom event
handler function name as a function handle and pass this function handle as an input
argument to timer. For details about function handles, see “Create Function Handle”.
For example, suppose you want to create an order using createOrderAndRoute

with the custom event handler function named eventhandler. This code assumes a
Bloomberg EMSX connection ¢, Bloomberg EMSX order order, and timer object t.

1 Run timer to execute eventhandler. The name-value pair argument TimerFcn
specifies the event handler function. The name-value pair argument Period
specifies a 1-second delay between executions of the event handler function. When
the name-value pair argument ExecutionMode is set to FixedRate, the event

1-25

1 Getting Started

1-26

handler function executes immediately after it is added to the MATLAB execution
queue.

t = timer("TimerFcn*,{@c.eventhandler}, "Period®,1,...
"ExecutionMode” , "fixedRate");

Start the timer to initiate and execute eventhandler immediately.

start(t)

Run createOrderAndRoute using the custom event handler by setting
useDefaultEventHandler to false.

createOrderAndRoute(c,order, "useDefaul tEventHandler® ,false)

Stop the timer to stop data updates.
stop(t)

If you want to resume data updates, run start.

Delete the timer once you are done with processing data updates for the Bloomberg
EMSX connection.

delete(t)

Workflow for Custom Event Handler Function

This workflow summarizes the tasks to work with a custom event handler function using
Bloomberg EMSX.

1
2
3

Write a custom event handler function and save it to a file.
Create a connection using emsx.

Subscribe to Bloomberg EMSX fields using orders and routes. You can also write
custom event handler functions to process subscription events.

Run the custom event handler function using timer. Use a function handle to specify
the custom event handler function name to run timer.

Start the timer to execute the custom event handler function immediately using
start.

Stop data updates using stop.
Unsubscribe from Bloomberg EMSX fields by using the API syntax.
Delete the timer using delete.

Writing and Running Custom Event Handler Functions with Bloomberg EMSX

9 Close the connection using close.

See Also

timer | close | createOrderAndRoute | delete | emsx | orders | routes | start
| stop

Related Examples

. “Create Functions in Files”
More About
. “Create Function Handle”

1-27

1 Getting Started

Writing and Running Custom Event Handler Functions with
Interactive Brokers

1-28

In this section...

“Write a Custom Event Handler Function” on page 1-28
“Run a Custom Event Handler Function” on page 1-28

“Workflow for Custom Event Handler Function” on page 1-29

Write a Custom Event Handler Function

You can process events related to any Interactive Brokers data updates by writing

a custom event handler function to use with Trading Toolbox. For example, you can
request data about all open orders or retrieve account information. Follow these tasks to
write a custom event handler.

Choose the events that you want to process, monitor, or evaluate.

Decide how the custom event handler function processes these events.

Determine the input and output arguments for the custom event handler function.

B WN —

Write the code for the custom event handler function.

For details, see “Create Functions in Files”. For a code example of an Interactive Brokers
event handler function, see ibExampleEventHandler._m.

Run a Custom Event Handler Function

You can run the custom event handler function by passing the function name as an input
argument into an existing function. Specify the custom event handler function name as

a character vector or function handle. For details about function handles, see “Create
Function Handle”.

For example, suppose you want to retrieve real-time data from Interactive Brokers
using realtime with the custom event handler function named eventhandler. You
can use either of these syntaxes to run eventhandler. This code assumes a IB Trader
Workstation connection ib, IB Trader Workstation 1Contract object ibContract, and
Interactive Brokers fields F.

Use a character vector.

Writing and Running Custom Event Handler Functions with Interactive Brokers

tickerid = realtime(ib, ibContract,f, "eventhandler®);

Or, use a function handle.

tickerid = realtime(ib, ibContract, f,@eventhandler);

Workflow for Custom Event Handler Function

This workflow summarizes the tasks to work with a custom event handler function using
Interactive Brokers.

1 Write a custom event handler function and save it to a file.

2 Create a connection to the IB Trader Workstation using ibtws.

3 Run an existing function to receive data updates. Use the custom event handler
function as an input argument.

Caution: To run default event handler and sample event handler functions, you
must run one event handler function at a time. After you run one event handler,
close the IB Trader Workstation connection. Then, create another connection to run
a different event handler with the same existing function. Otherwise, MATLAB
assigns multiple existing functions to events and errors occur.

4 Close the connection to the IB Trader Workstation using close.

See Also

close | ibtws | realtime

More About
. “Create Functions in Files”
. “Create Function Handle”

1-29

Workflow Models

“Workflow for Bloomberg EMSX” on page 2-2

“Workflows for Trading Technologies X_TRADER” on page 2-4
“Workflow for Interactive Brokers” on page 2-6

“Workflow for CQG” on page 2-8

“Workflow for FIX Flyer” on page 2-10

2 Workflow Models

Workflow for Bloomberg EMSX

2-2

The workflow for Bloomberg EMSX is versatile with many options for alternate flows to
create, route, and manage the status of an open order until it is filled.
Connect to Bloomberg EMSX using emsx.

2 Set up a subscription for orders and routes to obtain events on subsequent requests
using orders and routes.

3 Create a Bloomberg EMSX order. Options in the flow of creating an order are:

Create an order using createOrder.

Route an order using routeOrder.

Route an order with a strategy using routeOrderWithStrat.
* Route multiple orders with a strategy using groupRouteOrderWithStrat.
* Create an order and route using createOrderAndRoute.

+ Create an order and route with a strategy using
createOrderAndRouteWithStrat.

4 Modify an order or route using these functions:

* Modify an order using modifyOrder.
* Modify a route using modi fyRoute.
+ Modify a route with a strategy using modifyRouteWithStrat.

5 Delete an order or route using these functions:

Delete an order using deleteOrder.
+ Delete a route using deleteRoute.

6 Obtain information from Bloomberg EMSX using these functions:

Obtain broker information using getBroker Info.
Obtain Bloomberg EMSX field information using getAllFieldMetaData.

7 Explore information about existing orders and routes using these functions:

* View order transactions with a sample order blotter using emsxOrderBlotter.
* Process the current contents of the event queue using processkEvent.

8 Close the Bloomberg EMSX connection using close.

Workflow for Bloomberg EMSX

Related Examples

“Create an Order Using Bloomberg EMSX” on page 1-14
“Create and Manage a Bloomberg EMSX Order” on page 4-12
“Create and Manage a Bloomberg EMSX Route” on page 4-16
“Manage a Bloomberg EMSX Order and Route” on page 4-21

2-3

2 Workflow Models

Workflows for Trading Technologies X_TRADER

2-4

You can use X_TRADER to monitor market price information and submit orders.
To monitor market price information:

1 Connect to Trading Technologies X_TRADER using xtrdr.
2 Create an event notifier using createNotifier.

3 Create an instrument and attach it to the notifier using createlnstrument.
Optionally, use getData to return information on the instrument that you have
created.

4 Close the Trading Technologies X_TRADER connection using close.
To submit orders to X_TRADER:

Connect to Trading Technologies X_TRADER using xtrdr.
2 Create an event notifier using createNotifier.

3 Create an instrument and attach it to the notifier using create lnstrument.
Optionally, use getData to return information on the instrument that you have
created.

4 Create an order set using createOrderSet to define the level of the order status
events and event handlers for orders that will be submitted to X_TRADER.

5 Define the order using createOrderProfile. An order profile contains the settings
that define an individual order to be submitted.

6 Route the order for execution using the OrderSet object created by
createOrderSet in step 4.

7 Close the Trading Technologies X_TRADER connection using close.

To monitor market price information and respond to market changes by automatically
submitting orders to X_TRADER:

1 Connect to Trading Technologies X_TRADER using xtrdr.

2 Create an event notifier using createNotifier.

3 Create an instrument and attach it to the notifier using createlnstrument. Use
getData to return information on the instrument that you have created.

4 Define events by assigning callbacks for validating or invalidating an instrument
and performing calculations based on the event. Based on some predefined condition

Workflows for Trading Technologies X_TRADER

7

8

reached when changes in the incoming data satisfy the condition, event callbacks
execute the functions in steps 5, 6, and 7.

Create an order set using createOrderSet to define the level of the order status
events and event handlers for orders that will be submitted to X_TRADER.

Define the order using createOrderProfile. An order profile contains the settings
that define an individual order to be submitted.

Route the order for execution using the OrderSet object created by
createOrderSet in step 5.

Close the Trading Technologies X_TRADER connection using close.

Related Examples

“Create an Order Using X_TRADER” on page 1-17

“Listen for X_TRADER Price Updates” on page 4-2

“Listen for X_TRADER Price Market Depth Updates” on page 4-4
“Submit X_TRADER Orders” on page 4-8

2-5

2 Workflow Models

Workflow for Interactive Brokers

2-6

In this section...

“Request Interactive Brokers Market Data” on page 2-6
“Create Interactive Brokers Orders” on page 2-7

“Request Interactive Brokers Informational Data” on page 2-7

This diagram shows the functions that you can use with the IB Trader Workstation to
monitor market price information and submit orders.

°! Get Data Create Orders
ibtws accounts getdata orderid close
contractdetails timeseries create0rder
™ — — —
portfolio history oarders
realtime executions
marketdepth

Request Interactive Brokers Market Data

To request current, intraday, real-time, historical, or market depth data:

Connect to the IB Trader Workstation using ibtws.
Create the IB Trader Workstation 1Contract object.
Request current data for a security using getdata.
Request intraday data for a security using timeseries.
Request real-time data for a security using realtime.

Request historical data for a security using history.

N O O WO —

Request market depth data for a security using marketdepth.

Workflow for Interactive Brokers

8

Close the IB Trader Workstation connection using close.

Create Interactive Brokers Orders

To submit orders to the IB Trader Workstation:

0 N O O b WD —

Connect to the IB Trader Workstation using ibtws.
Create the IB Trader Workstation 1Contract object.
Create the IB Trader Workstation 10rder object.
Request a unique order identifier using orderid.
Create and submit the order using createOrder.
Request open order data using orders.

Request executed order data using executions.

Close the IB Trader Workstation connection using close.

Request Interactive Brokers Informational Data

To request information from the IB Trader Workstation:

o 0 b WN —

Connect to the IB Trader Workstation using 1btws.
Create the IB Trader Workstation IContract object.
Request contract detailed data using contractdetails.
Request account information using accounts.

Request portfolio data using portfolio.

Close the IB Trader Workstation connection using close.

Related Examples

“Create an Order Using IB Trader Workstation” on page 1-8

“Create Interactive Brokers Combination Order” on page 4-39

“Create and Manage an Interactive Brokers Order” on page 4-26

“Request Interactive Brokers Historical Data” on page 4-32

“Request Interactive Brokers Real-Time Data” on page 4-35

2-7

2 Workflow Models

Workflow for CQG

This diagram shows the functions you can use with CQG to monitor market price
information and submit orders.

Cisrltggclziggn Get Data Create Orders Cugrll?::jion
cag | realtime createOrder | close
startUp | timeseries . shutDown

history

2-8

To request current, intraday, or historical data:

Create the CQG connection object using cqg.

Define the CQG event handlers.

Connect to CQG using startUp.

Subscribe to a CQG instrument to request real-time data using realtime.
Request intraday data for a security using timeseries.

Request historical data for a security using history.

N O 0 hWODN —

Close the CQG connection using close or shutDown.
To submit orders to CQG:

Create the CQG connection object using cqg.
Define the CQG event handlers.
Connect to CQG using startUp.

B W N —

Create the CQG account credentials object.

Workflow for CQG

5 Subscribe to a CQG instrument to request real-time data using realtime.
6 Create and submit the order using createOrder.
7 Close the CQG connection using close or shutDown.

Related Examples

. “Create an Order Using CQG” on page 1-12

. “Create CQG Orders” on page 4-45

. “Request CQG Historical Data” on page 4-51

. “Request CQG Intraday Tick Data” on page 4-54
. “Request CQG Real-Time Data” on page 4-58

2-9

2 Workflow Models

Workflow for FIX Flyer

In this section...

“Create a FIX Message” on page 2-10
“Request Data and Create Orders Using FIX Messages” on page 2-10
“Receive a FIX Message” on page 2-11

FIX messages enable communication with a trading system. Send FIX messages using
the FIX Flyer Engine to:

* Request market data

* Create and manage orders

+ Retrieve order status and information

* Request news information

* Request other available information using the FIX protocol

Create a FIX Message

To send a FIX message, create a FIX message using a structure array or table. Convert
between structure arrays or tables and FIX messages using these functions:

* Convert a structure array that contains FIX tags as fields to a cell array of FIX
messages using struct2fix.

+ Convert a table that contains FIX tags as variables to a cell array of FIX messages
using table2fix.

Request Data and Create Orders Using FIX Messages

To request market data, submit orders, and request other information using FIX
messages, you can use the FIX Flyer Engine with these functions:

Connect to the FIX Flyer Engine using fFixFflyer.

2 To monitor events associated with the connection and FIX messages, add an event
handling listener using addListener.

3 Send a FIX message to the FIX Flyer Engine using sendMessage.

2-10

Workflow for FIX Flyer

4 For FIX messages that contain orders, retrieve order status and information using
orderlinfo.

5 Close the FIX Flyer connection using close.

Receive a FIX Message

To check the status of a transaction, receive a FIX message from the counterparty after
completing a transaction. To see the FIX tags and values of the FIX message, convert the
FIX message to a structure array or table using these functions:

Convert a FIX message to a structure array using Fix2struct.

+ Convert a FIX message to a table using Fix2table.

Related Examples
. “Create an Order Using FIX Flyer” on page 1-20

External Websites
. FIX Trading Community

2-11

http://www.fixtradingcommunity.org/

Transaction Cost Analysis

“Analyze Trading Execution Results” on page 3-2

“Post-Trade Analysis Metrics Definitions” on page 3-6

“Kissell Research Group Example Data Set Description” on page 3-9
“Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-19
“Estimate Portfolio Liquidation Costs” on page 3-23

“Optimize Percentage of Volume Trading Strategy” on page 3-28
“Optimize Trade Time Trading Strategy” on page 3-32

“Optimize Trade Schedule Trading Strategy” on page 3-36
“Estimate Trading Costs for Collection of Stocks” on page 3-41
“Conduct Back Test on Portfolio” on page 3-43

“Conduct Stress Test on Portfolio” on page 3-46

“Liquidate Dollar Value from Portfolio” on page 3-52

“Optimize Long Portfolio” on page 3-58

3 Transaction Cost And|ysis

Analyze Trading Execution Results

This example shows how to conduct post-trade analysis using transaction cost analysis
from the Kissell Research Group. Post-trade analysis includes implementation shortfall,
alpha capture, benchmark costs, broker value add, and Z-Score. For details about

these metrics, see “Post-Trade Analysis Metrics Definitions” on page 3-6. You

can use post-trade analysis to evaluate portfolio returns and profits. You can measure
performance of brokers and algorithms.

To access the code for this example, enter edit KRGPostTradeAnalysisExample.m.
Retrieve Market-Impact Parameters and Load Transaction Data

Retrieve the market-impact data from the Kissell Research Group FTP site.
Connect to the FTP site using the Ftp function with a user name and password.
Navigate to the Ml _Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file.

f = fep("ftp.kissellresearch.com®, "username”, "pwd");
cd(F, "MI_Parameters®);
mget(F, "MI_Encrypted_Parameters.csv®);

miData = readtable("MI_Encrypted_Parameters.csv®,"delimiter”,

, ", "ReadRowNames” ,false, "ReadVariableNames” ,true);

miData contains the encrypted market-impact date, code, and parameters.
Create a Kissell Research Group transaction-cost analysis object k.

k = krg(miData);

Load the example data PostTradeData from the MAT-file KRGExampleData.mat,
which is included with the toolbox.

load KRGExampleData.mat PostTradeData

For a description of the example data, see “Kissell Research Group Example Data Set
Description” on page 3-9.

Determine Implementation Shortfall Costs

Determine the components of the implementation shortfall costs in basis points. The
components are:

Analyze Trading Execution Results

* Fixed cost ISFixed

* Delay cost 1SDelayCost

+ Execution cost 1SExecutionCost

* Opportunity cost 1SOpportunityCost

For details about the cost components, see “Post-Trade Analysis Metrics Definitions” on
page 3-6.

PostTradeData.ISDollars = ...
PostTradeData.OrderShares .* PostTradeData.lSDecisionPrice;
PostTradeData. ISFixed = ...
PostTradeData. ISFixedDollars ./ PostTradeData.1SDollars*10000;
PostTradeData.ISDelayCost = ...
PostTradeData.OrderShares .* ...
(PostTradeData. ISArrivalPrice-PostTradeData. 1SDecisionPrice).* ...
PostTradeData.Sidelndicator ./ PostTradeData.ISDollars*1000;
PostTradeData. ISExecutionCost = ...
PostTradeData.TradedShares .* ...
(PostTradeData.AvgExecPrice-PostTradeData. ISArrivalPrice).* ...
PostTradeData.Sidelndicator ./ PostTradeData.ISDollars*1000;
PostTradeData. 1SOpportunityCost = ...
(PostTradeData.OrderShares-PostTradeData.TradedShares).* ...
(PostTradeData. ISEndPrice-PostTradeData. ISArrivalPrice).* ...
PostTradeData.Sidelndicator ./ PostTradeData.ISDollars*1000;

Determine the total implementation shortfall cost 1SCost.

PostTradeData.1SCost = PostTradeData.ISFixed + ...
PostTradeData. 1SDelayCost + PostTradeData.lSExecutionCost + ...
PostTradeData. ISOpportunityCost;

Determine Profit

Determine the alpha capture Alpha_CapturePct. Divide realized profit
Alpha_Realized by potential profit Alpha_TotalPeriod.

PostTradeData.Alpha_Realized = ...
(PostTradeData. ISEndPrice-PostTradeData.AvgExecPrice) . * ...
PostTradeData.TradedShares .* PostTradeData.Sidelndicator ./ ...
(PostTradeData.TradedShares .* PostTradeData.lSArrivalPrice)*10000;
PostTradeData.Alpha_TotalPeriod = ...
(PostTradeData. ISEndPrice-PostTradeData. ISArrivalPrice).* __.
PostTradeData.TradedShares .* PostTradeData.Sidelndicator ./ ...
(PostTradeData.TradedShares .* PostTradeData.lSArrivalPrice)*10000;

3 Transaction Cost And|ysis

lenAlpha_Realized = length(PostTradeData.Alpha_Realized);
PostTradeData.Alpha_CapturePct = zeros(lenAlpha_Realized,1);
for ii = 1:lenAlpha_Realized
if PostTradeData.Alpha_TotalPeriod(ii) > 0O
PostTradeData.Alpha_CapturePct(ii) = ...
PostTradeData.Alpha_Realized(ii) ./ ...
PostTradeData.Alpha_TotalPeriod(ii);
else
PostTradeData.Alpha_CapturePct(ii)
-(PostTradeData.Alpha_Realized(ii)
PostTradeData.Alpha_TotalPeriod(ii
PostTradeData.Alpha_TotalPeriod(ii
end
end

Determine Benchmark and Trading Costs
Determine benchmark costs in basis points. Here, the benchmark prices are:

* Close price of the previous day PrevClose Cost
* Open price Open_Cost

+ Close price Close_Cost

* Arrival cost Arrival_Cost

* Period VWAP PeriodVWAP_Cost

PostTradeData.PrevClose Cost = ...
(PostTradeData.AvgExecPrice-PostTradeData.PrevClose).* ...
PostTradeData.Sidelndicator ./ PostTradeData.PrevClose*10000;

PostTradeData.Open_Cost = ...
(PostTradeData.AvgExecPrice-PostTradeData.Open).* ...
PostTradeData.Sidelndicator ./ PostTradeData.Open*10000;

PostTradeData.Close_Cost = (PostTradeData.AvgExecPrice-PostTradeData.Close).* ...
PostTradeData.Sidelndicator ./ PostTradeData.Close*10000;

PostTradeData.Arrival_Cost = (PostTradeData.AvgExecPrice- ...
PostTradeData.ArrivalPrice).* ...

PostTradeData.Sidelndicator ./ PostTradeData.ArrivalPrice*10000;

PostTradeData.PeriodVWAP_Cost = (PostTradeData.AvgExecPrice- ...
PostTradeData.PeriodVWAP) .* __.

PostTradeData.Sidelndicator ./ PostTradeData.PeriodvVWAP*10000;

Estimate market-impact miCost and timing risk tr costs.

PostTradeData.Size = PostTradeData.TradedShares ./ PostTradeData.ADV;

Analyze Trading Execution Results

PostTradeData.Price = PostTradeData.ArrivalPrice;

PostTradeData.miCost = marketlmpact(k,PostTradeData);

PostTradeData.tr = timingRisk(k,PostTradeData);

Determine Broker Value Add and Z-Score

Determine the broker value add using the arrival cost and market impact.
PostTradeData.ValueAdd = (PostTradeData.Arrival_Cost-PostTradeData.miCost) * -1;
Determine the Z-Score using the broker value add and timing risk.

PostTradeData.zScore = PostTradeData.ValueAdd./PostTradeData.tr;

For details about the preceding calculations, contact the Kissell Research Group.

See Also

krg | marketlmpact | timingRisk

Related Examples
. “Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-19

More About

. “Post-Trade Analysis Metrics Definitions” on page 3-6

3 Transaction Cost And|ysis

Post-Trade Analysis Metrics Definitions

3-6

In this section...

“Implementation Shortfall” on page 3-6
“Alpha Capture” on page 3-7
“Benchmark Costs” on page 3-7
“Broker Value Add” on page 3-7
“Z-Score” on page 3-7

After executing a transaction, Kissell Research Group provides various metrics for
analyzing the results of a transaction. For an example using these metrics, see “Analyze

Trading Execution Results” on page 3-2.

For details about these calculations, contact the Kissell Research Group.

Implementation Shortfall

Implementation shortfall (IS) determines the total cost of implementing an investment
decision. IS subtracts the actual return from the paper return of a stock or portfolio after
including all visible costs including commissions, fees, and taxes. The Kissell Research
Group IS cost formula decomposes costs into fixed, delay, execution, and opportunity cost

components.

IS Component Description

Fixed cost Cost component that is not dependent upon
the implementation strategy.

Delay cost Cost component that represents the loss

in investment value between the time the
managers make the investment decision
and the order releases to the market.

Execution cost

Cost component that is the difference
between the execution price and the stock
price at the time the order releases to the
market.

Post-Trade Analysis Metrics Definitions

IS Component Description

Opportunity cost Cost component that represents the
foregone profit or loss resulting from

not being able to execute the order to
completion within the allotted time period.

Portfolio managers and traders use IS to understand the trading cost environment.

Alpha Capture

Alpha capture, or profit, is the realized profit divided by the potential profit. Realized
profit is based on the difference between end price and average execution price. Potential
profit is based on the difference between end price and arrival price. Portfolio managers
and traders use alpha capture to measure portfolio performance.

Benchmark Costs

The benchmark cost compares the average execution price to a specific benchmark price.
A benchmark price can be any price such as the close price. Traders use benchmark costs
to measure strategy and transaction performance.

Broker Value Add

The broker value add metric is a measure of the overall broker performance. A positive
value indicates that the broker performed better than expected and a negative value
indicates the broker under-performed expectations. This metric is the difference between
the estimated trading cost and the actual cost incurred by the investor. You can estimate
trading costs using marketImpact, priceAppreciation, and timingRisk. This
metric reflects performance given all market conditions on the day and buying and
selling behavior from all other participants.

Traders use this metric to measure broker performance.

Z-Score

Z-Score is the broker value add metric divided by timing risk. You can estimate timing
risk using timingRisk. The Z-Score specifies the number of standard deviations
away from the estimated cost. If the Z-Score is greater than or equal to two standard
deviations, then the actual cost varies greatly from the estimated cost.

3 Transaction Cost And|ysis

Traders use this metric to measure broker performance.

References

[1] Kissell, Robert. “The Expanded Implementation Shortfall: Understanding

Transaction Cost Components.” Journal of Trading. Vol. 1, Number 3, Summer
2006, pp. 6-16.

Related Examples

“Analyze Trading Execution Results” on page 3-2

3-8

Kissell Research Group Example Data Set Description

Kissell Research Group Example Data Set Description

The following descriptions define the data sets provided in the MAT-file
KRGExampleData.mat. There are three tables that contain example data: TradeData,

PortfolioData, and PostTradeData.

TradeData Variable Descriptions

The table TradeData provides example data for a collection of stocks in a transaction.
For examples of using this data set, see “Conduct Sensitivity Analysis to Estimate
Trading Costs” on page 3-19 and “Estimate Portfolio Liquidation Costs” on page

3-23.

Real market data comes from a data source such as Bloomberg.

Table Variable

Description

Symbol

Stock symbol.

Side

Side (*Buy” or "Sell").

Sidelndicator

Side indicator. 1 is a buy (add shares to
portfolio). -1 is a sell (remove shares from
portfolio).

AvgExecPrice

Average execution price.

ArrivalPrice

Arrival price. This price specifies the
interest of traders and represents the cost
attributable to brokers or algorithms.

PeriodVWAP

Volume weighted average price (VWAP).
The VWAP compares the execution
price to the interval VWAP price. The
VWAP benchmark determines whether
the executing broker achieves a fair

and reasonable price on the day of the
transaction.

CCYRate

Currency rate.

Volatility

A statistical measure of the dispersion of
daily returns for a given security. Volatility
is the standard deviation of daily log price

3-9

3 Transaction Cost And|ysis

3-10

Table Variable

Description

returns over time. Kissell Research Group
uses a 30-day historical period. Annualize
volatility by multiplying by the square root
of 250.

POV

Percentage of volume.

SectorCategory

Market sector category ("Energy”,
"Industrials”, "Materials”, and so
on).

OrderSizeCategory

Order size category ("Large”, "Medium®,
or "Small*®).

VolatilityCategory

Volatility category ("High", "Medium®, or
"Low").

POVRateCategory Percentage of volume rate category
("Aggressive”, "Passive”, or
"Normal ®).

MktCapCategory Market capitalization category ("LC" 1s
large cap, "MC*" is mid cap, "SM" is small
cap).

MomentumCategory Momentum category ("Favorable®,
"Neutral ", or "Adverse”®).

MktMovementCategory Market movement category ("Favorable®,
"Neutral ", or "Adverse”®).

ADV Average daily volume.

Price Stock price.

Size Size (number of shares divided by average
daily volume).

Alpha_bp Alpha estimate per day in basis points.

Shares Number of shares.

PortfolioData Variable Descriptions

The table Portfol ioData provides example data for a collection of stocks in a portfolio.
To use this data set, see portfolioCostCurves.

Kissell Research Group Example Data Set Description

Real portfolio data comes from a portfolio belonging to a company or portfolio manager.

Table Variable

Description

Symbol

Stock symbol.

Price_Local

Local price of the stock.

Price_Currency

Stock price with a specified base currency if
the stock trades outside the United States.
If the stock trades in the United States,
Price_Currency has the same value as
Price_Local.

ADV Average daily volume.
Volatility Volatility.
Shares Number of shares.

PostTradeData Variable Descriptions

The table PostTradeData provides example data for a collection of stocks in an executed
transaction. To use this data set, see “Analyze Trading Execution Results” on page 3-2.

Real market data comes from a data source such as Bloomberg.

Table Variable Description

Symbol Stock symbol.

Side Side ("Buy” or "Sell").

Sidelndicator Side indicator. 1 is a buy (add shares to
portfolio). -1 is a sell (remove shares from
portfolio).

Date Executed transaction date.

DecisionTime Decision time. The portfolio manager

decides to buy, sell, short, or cover a
position at this time. If no other timestamp
1s available, set this variable to the

time when the portfolio manager enters
the order into the trading system. If

the portfolio manager does not have a
timestamp for this decision, investors use

3-11

3 Transaction Cost And|ysis

Table Variable

Description

the close time of the previous day, open
time, or arrival time.

ArrivalTime

Arrival time. The trading system enters the
order into the market for execution at this
time. You can obtain it from the first order
or trade from the electronic audit trail.

EndTime

End time. The portfolio manager specifies
to complete the order at this time. Typically
this time is the end of the day or the time of
the last trade.

AvgExecPrice

Average executed price.

OrderShares

Number of shares in the transaction.

TradedShares

Number of shares in the executed
transaction.

Volatility

Volatility.

ADV

Average daily volume.

POV Percentage of volume.

CCYRate Currency rate.

MICategory Market-impact category (for example, 1).

PrevClose Close price of the previous day.

Open Open price.

Close Close price.

ArrivalPrice Arrival price. This price specifies the
interest of traders and represents the cost
attributable to brokers or algorithms.

PeriodVWAP Volume weighted average price (VWAP).

The VWAP compares the execution
price to the interval VWAP price. The
VWAP benchmark determines whether
the executing broker achieves a fair
and reasonable price on the day of the
transaction.

Kissell Research Group Example Data Set Description

Table Variable Description

Broker Broker name.

Algorithm Trading algorithm ("*Dark Pool ™, "TWAP",
"Arrival”, and so on).

Manager Portfolio manager name.

Trader Trader name.

SectorCategory Market sector category ("Energy”,
"Industrials”®, "Materials”, and so
on).

OrderSizeCategory Order size category ("Large”®, "Medium®,

or "Small*®).

VolatilityCategory

Volatility category ("High*®, "Medium®, or
"Low").

POVRateCategory Percentage of volume rate category
("Aggressive”, "Passive”, or
"Normal ®).

MktCapCategory Market capitalization category ("LC" is

large cap, "MC" 1s mid cap, "SM" is small
cap).

StockMomentumCategory

Stock momentum category (*Favorable®,
"Neutral®, or "Adverse”).

MktMovementCategory Market movement category (" Favorable®,
"Neutral®, or "Adverse”).
StepOut Investor field designation. This variable

1s optional for grouping and summary
analysis. This field refers to a process
where a broker (broker #1) receives an
order from a client. Then this broker gives
that order to another broker (broker #2)
for its execution. Broker #1 receives credit
for the trade but its performance applies to
broker #2 who executed the trade.

3-13

3 Transaction Cost And|ysis

3-14

Table Variable Description

ISDecisionPrice Decision price. This variable is the stock
price when the portfolio manager decides to
buy, sell, short, or cover a position.

ISArrivalPrice Midpoint of the bid-ask spread at the time
an order enters the market.

ISEndPrice End price. This variable is the stock price
at the specified end time of the order.

ISFixedDol lars Fixed fees in dollars that include the
commission, taxes, clearing and settlement
charges, and so on.

TradeDataBackTest Variable Descriptions

The table TradeDataBackTest provides example data for a set of stocks and a series of
dates. The data contains historical trade information for each stock. To use this data set,
see “Conduct Back Test on Portfolio” on page 3-43.

Real market data comes from a data source such as Bloomberg.

Table Variable Description

Symbol Stock symbol.

Date Historical date.

Shares Number of shares.

Side Side (*Buy*® or "Sell").

Value Dollar value of the stock in the portfolio.

Price Stock price.

Size Size (number of shares divided by average
daily volume).

EstReturn Estimated return decimal value for the

stock in the portfolio.

Volatility

A statistical measure of the dispersion of
daily returns for a given security. Volatility
is the standard deviation of daily log price

Kissell Research Group Example Data Set Description

Table Variable Description
returns over time. Kissell Research Group
uses a 30-day historical period. Annualize
volatility by multiplying by the square root
of 250.

ADV Average daily volume.

MktCap Market capitalization.

TradeTime Trade time.

POVRate Percentage of volume rate.

MICode Market-impact code (1, 2, 3, and so on).

FXRate Foreign exchange rate.

POV Percentage of volume.

TradeDataStressTest Variable Descriptions

The table TradeDataStressTest provides example data for a set of stocks for a date
range. The data contains trade information for each stock. To use this data set, see
“Conduct Stress Test on Portfolio” on page 3-46.

Real market data comes from a data source such as Bloomberg.

Table Variable Description

Symbol Stock symbol.

Date Historical date.

Shares Number of shares.

Side Side ("Buy” or "Sell*").

Value Dollar value of the stock in the portfolio.

Price Stock price.

Size Size (number of shares divided by average
daily volume).

EstReturn Estimated return decimal value for the

stock in the portfolio.

3-15

3 Transaction Cost And|ysis

Table Variable Description

Volatility A statistical measure of the dispersion of
daily returns for a given security. Volatility
is the standard deviation of daily log price
returns over time. Kissell Research Group
uses a 30-day historical period. Annualize
volatility by multiplying by the square root

of 250.
ADV Average daily volume.
MktCap Market capitalization.
TradeTime Trade time.
POVRate Percentage of volume rate.
MICode Market-impact code (1, 2, 3, and so on).
FXRate Foreign exchange rate.

TradeDataPortOpt Variable Descriptions

The table TradeDataPortOpt contains example data for a collection of stocks in a
portfolio. This data contains lower and upper bounds for the constraints used in the
portfolio optimization. To use this data set, see “Liquidate Dollar Value from Portfolio” on
page 3-52.

To see the related covariance data for each stock in the portfolio, see the covariance data
table CovarianceData.

Real portfolio data comes from a portfolio belonging to a company or portfolio manager.

Table Variable Description

Symbol Stock symbol.

Date Date.

Shares Number of shares.

Value Dollar value of the stock in the portfolio.

Price Stock price.

Size Size (number of shares divided by average
daily volume).

3-16

Kissell Research Group Example Data Set Description

Table Variable

Description

EstReturn

Estimated return decimal value for the
stock in the portfolio.

Volatility

A statistical measure of the dispersion of
daily returns for a given security. Volatility
is the standard deviation of daily log price
returns over time. Kissell Research Group
uses a 30-day historical period. Annualize
volatility by multiplying by the square root
of 250.

ADV Average daily volume.

MktCap Market capitalization.

TradeTime Trade time.

MICode Market-impact code (1, 2, 3, and so on).
LB Wt Lower bound weight.

UB_Wt Upper bound weight.

LB_MinShares

Lower bound for the minimum shares.

UB_MaxShares

Upper bound for the maximum shares.

LB_MinPctADV

Lower bound for the minimum percentage
of average daily volume.

UB_MaxPctADV

Upper bound for the maximum percentage
of average daily volume.

LB MinvValue

Lower bound for the minimum value.

UB_MaxValue

Upper bound for the maximum value.

UB_MaxMml

Upper bound for the maximum market-
1mpact cost.

CovarianceData Table Description

The table CovarianceData contains a covariance value for all stocks in the portfolio
data table TradeDataPortOpt. Each variable in the table is a different stock. To use
this data set in the portfolio optimization, see “Liquidate Dollar Value from Portfolio” on

page 3-52.

3-17

3 Transaction Cost And|ysis

3-18

References

[1] Kissell, Robert. “A Practical Framework for Transaction Cost Analysis.” Journal of
Trading. Vol. 3, Number 2, Summer 2008, pp. 29-37.

[2] Kissell, Robert. “The Expanded Implementation Shortfall: Understanding
Transaction Cost Components.” Journal of Trading. Vol. 1, Number 3, Summer
2006, pp. 6-16.

[3] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.
Elsevier/Academic Press, 2013.

[4] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. AMACOM, Inc.,
2003.

Related Examples

. “Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-19
. “Conduct Back Test on Portfolio” on page 3-43

. “Conduct Stress Test on Portfolio” on page 3-46

. “Estimate Portfolio Liquidation Costs” on page 3-23

. “Liquidate Dollar Value from Portfolio” on page 3-52

. “Analyze Trading Execution Results” on page 3-2

Conduct Sensitivity Analysis to Estimate Trading Costs

Conduct Sensitivity Analysis to Estimate Trading Costs

This example shows how to evaluate changes in trading costs due to liquidity, volatility,
and market sensitivity to order flow and trades. With transaction cost analysis from the
Kissell Research Group, you can simulate the trading cost environment for a collection
of stocks. Sensitivity analysis enables you to estimate future trading costs for different
market conditions to determine the appropriate portfolio contents that meet the needs of
the investors.

Here, evaluate changes in trading costs due to decreasing average daily volume by 50%
and doubling volatility. The example data uses the percentage of volume (POV) trade
strategy.

To access the code for this example, enter edit KRGSensitivityAnalysisExample.m.
Retrieve Market-Impact Parameters and Load Transaction Data

Retrieve the market-impact data from the Kissell Research Group FTP site.
Connect to the FTP site using the Ftp function with a user name and password.
Navigate to the Ml _Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file.

T = fep("ftp.kissellresearch.com®, "username”, "pwd");
cd(f, "MI_Parameters®);
mget(F, "MI_Encrypted_Parameters.csv®);

miData = readtable("MI_Encrypted_Parameters.csv®,“delimiter”,

, ", "ReadRowNames* ,false, "ReadVariableNames® ,true);

miData contains the encrypted market-impact date, code, and parameters.
Create a Kissell Research Group transaction-cost analysis object k.

k = krg(miData);

Load the example data from the MAT-file KRGExampleData.mat, which is included with
the toolbox.

load KRGExampleData.mat

For a description of the example data, see “Kissell Research Group Example Data Set
Description” on page 3-9.

3-19

3 Transaction Cost And|ysis

3-20

Estimate Initial Trading Costs
Estimate initial trading costs using the example data TradeData. The trading costs are:

* Instantaneous trading cost itc
* Market-impact cost mi

* Timing risk tr

* Price appreciation pa

Group all four trading costs into a numeric matrix initTCA.

itc = iStar(k,TradeData);

mi = marketlmpact(k,TradeData);
tr = timingRisk(k,TradeData);
pa = priceAppreciation(k,TradeData);

initTCA = [itc mi tr pa];
Create Scenario

Set variables to create the scenario. Here, the scenario decreases average daily volume by
50% and doubles volatility. The stock price, volume, estimated alpha, and trade strategy
remain unchanged from the example data. You can modify the values of these variables
to create different scenarios. The fields are:

+ Average daily volume
* Volatility

+ Stock price

* Volume

* Alpha estimate

+ POV trade strategy

* Trade time trade strategy
adjADV = 0.5;
adjVolatility = 2.0;
adjPrice = 1.0;
adjVolume = 1.0;
adjAlpha = 1.0;

adjPov = 1.0;
adjTradeTime = 1.0;

Adjust the example data based on the scenario variables.

Conduct Sensitivity Analysis to Estimate Trading Costs

TradeDataAdj = TradeData;

TradeDataAdj -Size = TradeData.Size .* (1./adjADV);
TradeDataAdj .ADV = TradeData.ADV .* adjADV;

TradeDataAdj -Volatility = TradeData.Volatility .* adjVolatility;
TradeDataAdj -Price = TradeData.Price .* adjPrice;

TradeDataAdj -Alpha_bp = TradeData.Alpha_bp .* adjAlpha;

TradeDataAdj contains the adjusted data. Size doubles because average daily volume
decreases by 50%.

Convert POV trade strategy to the trade time trade strategy.

[~.,povFlag,timeFlag] = krg.krgDataFlags(TradeData);
if povFlag
TradeDataAdj .POV = TradeData.POV.*adjPOV;
TradeDataAdj.-TradeTime = TradeDataAdj-Size .* ...
((1-TradeDataAdj -POV) ./ TradeDataAdj.POV) .* (1./adjVolume);
elseif timeFlag
TradeDataAdj.-TradeTime = tradedata.TradeTime .* adjTradeTime;
TradeDataAdj .POV = TradeDataAdj.Size ./ ...
(TradeDataAdj .Size + TradeDataAdj.TradeTime .* adjVolume);
end

Estimate Trading Costs for Scenario

Estimate the trading costs based on the adjusted data. The numeric matrix newTCA
contains the trading costs for the scenario.

itc = iStar(k,TradeDataAdj);

mi = marketlmpact(k,TradeDataAdj);
tr = timingRisk(k,TradeDataAdj);
pa = priceAppreciation(k,TradeDataAdj);

newTCA = [itc mi tr pa];

Subtract the trading costs from the scenario from the initial trading costs.

rawWl = newTCA - initTCA;

wi = table(rawwl(:,1),rawwi(:,2),rawWi(:,3),rawwi(:,4),
"VariableNames® ,{"I1TC","MI","TR","PA"}):

The table wi contains the full impact of this scenario on the trading costs.

Display trading costs for the first three rows in wi.

wi(l:3,:)

3-21

3 Transaction Cost And|ysis

ans =
ITC M1 TR PA
43.05 0.65 290.80 -9.49
408.29 124 .52 443_.16 8.47
80.92 13.79 114 .97 0.93

The variables in wi are:

* Instantaneous trading cost
* Market-impact cost
* Timing risk

* Price appreciation

For details about the preceding calculations, contact the Kissell Research Group.

See Also

iStar | krg | marketlmpact | priceAppreciation | timingRisk

Related Examples

. “Analyze Trading Execution Results” on page 3-2

More About

. “Kissell Research Group Example Data Set Description” on page 3-9

3-22

Estimate Portfolio Liquidation Costs

Estimate Porifolio Liquidation Costs

This example shows how to determine the cost of liquidating individual stocks in a
portfolio using transaction cost analysis from the Kissell Research Group. Compare the
individual stocks in a portfolio using various metrics in a scatter plot.

The example data uses the percentage of volume trade strategy to calculate costs. You
can also use the trade time trade strategy to run the analysis by replacing the percentage
of volume data with trade time data.

To access the code for this example, enter edit KRGPortfolioLiquidityExample.m.
Retrieve Market-Impact Parameters and Load Transaction Data

Retrieve the market-impact data from the Kissell Research Group FTP site.
Connect to the FTP site using the ftp function with a user name and password.
Navigate to the Ml _Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file.

f = fep("ftp.Kkissellresearch.com®, "username”, "pwd");

cd(f, "MI_Parameters®);
mget(F, "MI_Encrypted_Parameters.csv®);

miData = readtable("MI_Encrypted_Parameters.csv®,"delimiter”,
", ", "ReadRowNames” , false, "ReadVariableNames" ,true);

miData contains the encrypted market-impact date, code, and parameters.
Create a Kissell Research Group transaction-cost analysis object k.
k = krg(miData);

Load the example data TradeData from the MAT-file KRGExamp leData.mat, which is
included with the toolbox.

load KRGExampleData.mat TradeData

For a description of the example data, see “Kissell Research Group Example Data Set
Description” on page 3-9.

Estimate Trading Costs

Estimate market-impact costs mi.

TradeData.mi = marketlmpact(k,TradeData);

3-23

3 Transaction Cost And|ysis

Estimate the timing risk tr.
TradeData.tr = timingRisk(k,TradeData);

Estimate the liquidity factor 1F.

TradeData.lf = liquidityFactor(k,TradeData);

For details about the preceding calculations, contact the Kissell Research Group.
Display Portfolio Plots

Create a scatter plot that shows the following:

+ Size

+ Volatility

+ Market impact
* Timing risk

+ Liquidity factor

figure

axOrder = subplot(2,3,1);

nSymbols = 1:length(TradeData.Size);
scatter(nSymbols,TradeData.Size*100,10, "filled")
grid on

box on

title(" Order Size (%ADV)™)
axOrder.YAxis.TickLabelFormat = "%.1f%%";

axVolatility = subplot(2,3,2);
scatter(nSymbols,TradeData.Volatility*100,10, "filled®)
grid on

box on

title("Volatility®)

axVolatility._YAxis.TickLabelFormat = “%g%%" ;

axMl = subplot(2,3,4);
scatter(nSymbols,TradeData.mi,10,"filled")
grid on

box on

title("Market Impact (bp)*)

axMl .YAxis.TickLabelFormat = "%.1Ff";

axTR = subplot(2,3,5);

3-24

Estimate Portfolio Liquidation Costs

scatter(nSymbols,TradeData.tr,10, " filled")
grid on

box on

title("Timing Risk (bp)*®)
axTR.YAxis.TickLabelFormat = "%.1Ff";

axLF = subplot(2,3,6);
scatter(nSymbols,TradeData. 1f*100,10, " filled")
grid on

box on

title("Liquidity Factor®)
axLF.YAxis.TickLabelFormat = "%.2F%%" ;

3-25

3 Transaction Cost Analysis

#

FFigure1 o)

File Edit View Inset Tools Desktop Window Help N
Ddde K| AT ELA- 2| 0EH O
Order Size (“%ADV) Volatility
60.0% 50% |
L A0% [+ -""-all . .
40.0% L
L T .
30% .1:. ‘e "__1
20.0% .. es o %pt
20% = = s N
é - - r’ 'l‘l- . "
0.0% e 10%:
0 50 100 0 50 100
Market Impact (bp) Timing Risk (bp) Liquidity Factor
150.0 300.0 300 .00%
100.0 ¢ * 200.0 200.00% .
5000 * o .4 1000 [+, "%gpe"] 100.00% *
* L] - -
: ";-" a - -"~ 1) ..l - - -'
b el e i --!-:"rﬁ'*m
0.0 0.0 - 0.00% :
0 a0 100 0 a0 100 0 a0 100

This figure demonstrates a snapshot view into the trading and liquidation costs,
volatility, and size of the stocks in the portfolio. You can modify this scatter plot to
include other variables from TradeData.

See Also

krg | liquidityFactor | marketImpact | timingRisk

3-26

Estimate Portfolio Liquidation Costs

Related Examples

“Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-19

More About

“Kissell Research Group Example Data Set Description” on page 3-9

3-27

3 Transaction Cost And|ysis

Optimize Percentage of Volume Trading Strategy

3-28

This example shows how to optimize the strategy for a single stock by minimizing
trading costs using transaction cost analysis from the Kissell Research Group. The
optimization minimizes trading costs associated with the percentage of volume trading
strategy and a specified risk aversion parameter Lambda. The trading cost minimization
is expressed as

min [(MI +PA)+ Lambda- TR] ,

where trading costs are market impact MI, price appreciation PA, and timing risk TR.
For details, see marketlImpact, priceAppreciation, and timingRisk. This example
finds a local minimum for this expression. For details about searching for the global
minimum, see “Troubleshooting and Tips”.

Here, you can optimize the percentage of volume trade strategy. To optimize trade time
and trade schedule strategies, see “Optimize Trade Time Trading Strategy” on page
3-32 and “Optimize Trade Schedule Trading Strategy” on page 3-36.

To access the code for this example, enter edit
KRGSingleStockOptimizationExample.m.

Retrieve Market-Impact Parameters and Create Example Data

Retrieve the market-impact data from the Kissell Research Group FTP site.
Connect to the FTP site using the Ftp function with a user name and password.
Navigate to the Ml _Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file.

f = fep("ftp.Kkissellresearch.com®, "username”, "pwd");
cd(f, "MI_Parameters®);
mget(F, "MI_Encrypted_Parameters.csv®);

miData = readtable("MI_Encrypted_Parameters.csv®,"delimiter”,
",","ReadRowNames” , false, "ReadVariableNames" ,true);

miData contains the encrypted market-impact date, code, and parameters.

Create a Kissell Research Group transaction-cost analysis object k.

k = krg(miData);

Optimize Percentage of Volume Trading Strategy

Create Single Stock Data

The structure tradeData contains data for a single stock. Use a structure or table to
define this data. The fields are:

* Number of shares

* Average daily volume

+ Volatility

+ Stock price

+ Initial percentage of volume trade strategy
* Alpha estimate

tradeData.Shares = 100000;
tradeData.ADV = 1000000;
tradeData.Volatility = 0.25;
tradeData.Price = 35;

tradeData.POV = 0.5;
tradeData._Alpha_bp = 50;

Define Optimization Parameters
Define risk aversion level Lambda. Set Lambda from 0 to Inf.
Lambda = 1;

Define lower LB and upper UB bounds of strategy input for optimization.

LB
UB

0;
1;

Define the function handle fun for the objective function. To access the code for this
function, enter edit krgSingleStockOptimizer.m.

fun = @(pov)krgSingleStockOptimizer(pov,k,tradeData,Lambda) ;
Minimize Trading Costs for Trade Strategy

Minimize the trading costs for the percentage of volume trade strategy. fminbnd finds
the optimal value for the percentage of volume trade strategy based on the lower and
upper bound values. Fminbnd finds a local minimum for the trading cost minimization
expression.

[tradeData.POV, totalcost] = fminbnd(fun,LB,UB);

3-29

3 Transaction Cost And|ysis

3-30

Display the optimized trade strategy tradeData.POV.
tradeData.POV
ans =

0.35

Estimate Trading Costs for Optimized Strategy

Estimate the trading costs povCosts using the optimized trade strategy.

mi marketImpact(k, tradeData);

pa = priceAppreciation(k,tradeData);
tr = timingRisk(k,tradeData);
povCosts = [totalcost mi pa tr];

Display trading costs.
povCosts

100.04 56.15 4.63 39.27
The trading costs are:

+ Total cost
* Market impact
* Price appreciation

* Timing risk

For details about the preceding calculations, contact the Kissell Research Group.

References

[1] Kissell, Robert. “Algorithmic Trading Strategies.” Ph.D. Thesis. Fordham University,
May 2006.

[2] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.
Elsevier/Academic Press, 2013.

[3] Glantz, Morton, and Robert Kissell. Multi-Asset Risk Modeling. Elsevier/Academic
Press, 2013.

Optimize Percentage of Volume Trading Strategy

[4] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. AMACOM, Inc.,
2003.

See Also

fminbnd | krg | marketlmpact | priceAppreciation | timingRisk

Related Examples

“Optimize Trade Time Trading Strategy” on page 3-32

“Optimize Trade Schedule Trading Strategy” on page 3-36

“Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-19
“Estimate Portfolio Liquidation Costs” on page 3-23

3-31

3 Transaction Cost And|ysis

Optimize Trade Time Trading Strategy

3-32

This example shows how to optimize the strategy for a single stock by minimizing
trading costs using transaction cost analysis from the Kissell Research Group. The
optimization minimizes trading costs associated with the trade time trading strategy and
a specified risk aversion parameter Lambda. The trading cost minimization is expressed
as

min [(MI +PA)+ Lambda- TR] ,

where trading costs are market impact MI, price appreciation PA, and timing risk TR.
For details, see marketlImpact, priceAppreciation, and timingRisk. This example
finds a local minimum for this expression. For details about searching for the global
minimum, see “Troubleshooting and Tips”.

Here, you can optimize the trade time trade strategy. To optimize percentage of volume
and trade schedule strategies, see “Optimize Percentage of Volume Trading Strategy” on
page 3-28 and “Optimize Trade Schedule Trading Strategy” on page 3-36.

To access the code for this example, enter edit
KRGSingleStockOptimizationExample.m.

Retrieve Market-Impact Parameters and Create Example Data

Retrieve the market-impact data from the Kissell Research Group FTP site.
Connect to the FTP site using the Ftp function with a user name and password.
Navigate to the Ml _Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file.

f = fep("ftp.Kkissellresearch.com®, "username”, "pwd");
cd(f, "MI_Parameters®);
mget(F, "MI_Encrypted_Parameters.csv®);

miData = readtable("MI_Encrypted_Parameters.csv®,"delimiter”,
",","ReadRowNames” , false, "ReadVariableNames" ,true);

miData contains the encrypted market-impact date, code, and parameters.

Create a Kissell Research Group transaction-cost analysis object k.

k = krg(miData);

Optimize Trade Time Trading Strategy

Create Single Stock Data

The structure tradeData contains data for a single stock. Use a structure or table to
define this data. The fields are:

* Number of shares

* Average daily volume

* Volatility

+ Stock price

+ Initial trade time trade strategy

+ Alpha estimate

tradeData.Shares = 100000;
tradeData.ADV = 1000000;
tradeData.Volatility = 0.25;
tradeData.Price = 35;
tradeData.TradeTime = 0.5;
tradeData.Alpha_bp = 50;

Define Optimization Parameters

Define risk aversion level Lambda. Set Lambda from 0 to Inf.

Lambda = 1;

Define lower LB and upper UB bounds of strategy input for optimization.

LB
UB

0;
1;

Define the function handle Fun for the objective function. To access the code for this
function, enter edit krgSingleStockOptimizer.m.

fun = @(tradetime)krgSingleStockOptimizer(tradetime,k,tradeData,Lambda);
Minimize Trading Costs for Trade Strategy

Minimize the trading costs for the trade time trade strategy. fminbnd finds the optimal
value for the trade time trade strategy based on the lower and upper bound values.
fminbnd finds a local minimum for the trading cost minimization expression.

[tradeData.TradeTime,totalcost] = fminbnd(fun,LB,UB);

3-33

3 Transaction Cost And|ysis

3-34

Display the optimized trade strategy tradeData.TradeTime.
tradeData.TradeTime
ans =
0.19
Estimate Trading Costs for Optimized Strategy

Estimate the trading costs tradeTimeCosts using the optimized trade strategy.
mi marketlmpact(k,tradeData) ;

tr = timingRisk(k,tradeData);

pa priceAppreciation(k,tradeData);
tradeTimeCosts = [totalcost mi pa tr];

Display trading costs.
tradeTimeCosts

tradeTimeCosts =
100.04 56.15 4.63 39.27
The trading costs are:

+ Total cost
* Market impact
* Price appreciation

* Timing risk

For details about the preceding calculations, contact the Kissell Research Group.

References

[1] Kissell, Robert. “Algorithmic Trading Strategies.” Ph.D. Thesis. Fordham University,
May 2006.

[2] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.
Elsevier/Academic Press, 2013.

[3] Glantz, Morton, and Robert Kissell. Multi-Asset Risk Modeling. Elsevier/Academic
Press, 2013.

Optimize Trade Time Trading Strategy

[4] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. AMACOM, Inc.,
2003.

See Also

fminbnd | krg | marketlmpact | priceAppreciation | timingRisk

Related Examples

“Optimize Percentage of Volume Trading Strategy” on page 3-28
“Optimize Trade Schedule Trading Strategy” on page 3-36

“Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-19
“Estimate Portfolio Liquidation Costs” on page 3-23

3-35

3 Transaction Cost And|ysis

Optimize Trade Schedule Trading Strategy

3-36

This example shows how to optimize the strategy for a single stock by minimizing
trading costs using transaction cost analysis from the Kissell Research Group. The
optimization minimizes trading costs associated with the trade schedule trading strategy
and a specified risk aversion parameter Lambda. The trading cost minimization is
expressed as

min [(MI + PA)+ Lambda-TR],

where trading costs are market impact MI, price appreciation PA, and timing risk TR.
For details, see marketImpact, priceAppreciation, and timingRisk.

This example requires an Optimization Toolbox™ license. For background information,
see “Optimization Theory Overview”.

Here, you can optimize the trade schedule trade strategy. The optimization finds a local
minimum for this expression. For ways to search for the global minimum, see “Local

vs. Global Optima”. To optimize percentage of volume and trade time strategies, see
“Optimize Percentage of Volume Trading Strategy” on page 3-28 and “Optimize Trade
Time Trading Strategy” on page 3-32.

To access the code for this example, enter edit
KRGSingleStockOptimizationExample._m.

Retrieve Market-Impact Parameters

Retrieve the market-impact data from the Kissell Research Group FTP site.
Connect to the FTP site using the Ftp function with a user name and password.
Navigate to the Ml _Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file.

T = fep("ftp.kissellresearch.com®, "username”, "pwd");
cd(f, "MI_Parameters®);
mget(F, "MI_Encrypted_Parameters.csv®);

miData = readtable("MI_Encrypted_Parameters.csv®, “delimiter”,
", ", "ReadRowNames* , false, "ReadVariableNames*® ,true);

miData contains the encrypted market-impact date, code, and parameters.

Optimize Trade Schedule Trading Strategy

Create a Kissell Research Group transaction-cost analysis object k.
k = krg(miData);
Create Single Stock Data

The structure tradeData contains data for a single stock. Use a structure or table to
define this data. The fields are:

* Number of shares

+ Average daily volume

+ Volatility

+ Stock price

* Alpha estimate

tradeData.Shares = 100000;

tradeData.ADV = 1000000;

tradeData.Volatility = 0.25;

tradeData.Price = 35;
tradeData.Alpha_bp = 50;

Define the number of trades and the volume per trade for the initial strategy. The fields
VolumeProfile and TradeSchedule define the initial trade schedule trade strategy.

numlntervals = 26;

tradeData.VolumeProfile = ones(l,numlntervals) * ...
tradeData.ADV/numlntervals;

tradeData.TradeSchedule = ones(l1,numlntervals) .* ...
(tradeData.Shares./numlntervals);

Define Optimization Parameters

Define risk aversion level Lambda. Set Lambda from 0 to Inf.

Lambda = 1;

Define lower LB and upper UB bounds of shares traded per interval for optimization.

LB
UB

zeros(1,numlntervals);
ones(l,numlntervals) .* tradeData.Shares;

Specify constraints Aeq and Beq to denote that shares traded in the trade schedule must
match the total number of shares.

3-37

3 Transaction Cost And|ysis

3-38

Aeq
Beq

ones(l,numlntervals);
tradeData.Shares;

Define optimization options for maximum number of function evaluations
"MaxFunEvals® and iterations "Maxlter". The options "MaxFunEvals™ and
"Maxlter" are set to large values so that the optimization can iterate many times to
find a local minimum.

options = optimoptions("“fmincon®, "MaxFunEvals®,100000, "MaxIter*®,100000) ;

Define the function handle fun for the objective function. To access the code for this
function, enter edit krgSingleStockOptimizer.m.

fun = @(tradeschedule)krgSingleStockOptimizer(tradeschedule,k,
tradeData,Lambda) ;

Minimize Trading Costs for Trade Strategy

Minimize the trading costs for the trade schedule trade strategy. fmincon finds the
optimal value for the trade schedule trade strategy based on the lower and upper bound
values. It does this by finding a local minimum for the trading cost.

[tradeData.TradeSchedule,totalcost,exitflag] = fmincon(fun,
tradeData.TradeSchedule,[],[]1.Aeq,Beq,LB,UB,[],options);

To check whether fmincon found a local minimum, display the reason why the function
stopped.

exitflag
exitflag =
1.00

fmincon returns 1 when it finds a local minimum. For details, see exitflag.
Display the optimized trade strategy tradeData.TradeSchedule.
tradeData. TradeSchedule
ans =

Columns 1 through 5

35563.33 18220.14 11688.59 8256.81 6057.39

Optimize Trade Schedule Trading Strategy

Estimate Trading Costs for Optimized Strategy
Estimate trading costs tradeScheduleCosts using the optimized trade strategy.

mi marketlmpact(k, tradeData);

pa = priceAppreciation(k,tradeData);

tr = timingRisk(k,tradeData);
tradeScheduleCosts = [totalcost mi pa tr];

Display trading costs.
tradeScheduleCosts
tradeScheduleCosts =

97.32 47 .66 6.75 42 91

The trading costs are:

* Total cost
* Market impact
* Price appreciation

* Timing risk

For details about the preceding calculations, contact the Kissell Research Group.

References

[1] Kissell, Robert. “Algorithmic Trading Strategies.” Ph.D. Thesis. Fordham University,
May 2006.

[2] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.
Elsevier/Academic Press, 2013.

[3] Glantz, Morton, and Robert Kissell. Multi-Asset Risk Modeling. Elsevier/Academic
Press, 2013.

[4] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. AMACOM, Inc.,
2003.

3-39

3 Transaction Cost And|ysis

3-40

See Also

fmincon | krg | marketlmpact | optimoptions | priceAppreciation |
timingRisk

Related Examples

“Optimize Percentage of Volume Trading Strategy” on page 3-28

“Optimize Trade Time Trading Strategy” on page 3-32

“Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-19
“Estimate Portfolio Liquidation Costs” on page 3-23

Estimate Trading Costs for Collection of Stocks

Estimate Trading Costs for Collection of Stocks

This example shows how to estimate four different trading costs for a collection of stocks
using Kissell Research Group transaction cost analysis.

Retrieve Market-Impact Parameters and Load Transaction Data

Retrieve the market-impact data from the Kissell Research Group FTP site.
Connect to the FTP site using the Ftp function with a user name and password.
Navigate to the Ml _Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file.

f = ftp("ftp.kissellresearch.com®, "username”, "pwd");
cd(F, "MI_Parameters”);
mget(F, "MI_Encrypted_Parameters.csv®);

miData = readtable("MI_Encrypted_Parameters.csv®,“delimiter”,

, ", "ReadRowNames” ,false, "ReadVariableNames” ,true);

miData contains the encrypted market-impact date, code, and parameters.
Create a Kissell Research Group transaction-cost analysis object k.

k = krg(miData);

Load the example data TradeData from the MAT-file KRGExamp leData.mat, which is
included with the toolbox.

load KRGExampleData.mat TradeData

For a description of the example data, see “Kissell Research Group Example Data Set
Description” on page 3-9.

Estimate Trading Costs

Estimate instantaneous trading cost itc using TradeData.
itc = iStar(k,TradeData);

Estimate market-impact cost mi.

mi = marketlmpact(k,TradeData);

Estimate timing risk tr.

3-41

3 Transaction Cost And|ysis

3-42

tr = timingRisk(k,TradeData);
Estimate price appreciation pa.

pa = priceAppreciation(k,TradeData);

See Also

iStar | krg | marketlmpact | priceAppreciation | timingRisk

Related Examples

“Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-19
. “Estimate Portfolio Liquidation Costs” on page 3-23

“Optimize Percentage of Volume Trading Strategy” on page 3-28

Conduct Back Test on Portfolio

Conduct Back Test on Portfolio

This example shows how to conduct a back test on a set of stocks using transaction cost
analysis from the Kissell Research Group. Analyze the implementation of an investment
strategy on a specific day or date range. Estimate historical market-impact costs and the
corresponding dollar values for the specified historical dates. Analyze the trading costs of
different orders on various dates.

To access the code for this example, enter edit KRGBackTestingExample.m.
Retrieve Market-Impact Parameters and Load Historical Data

Retrieve the market-impact data from the Kissell Research Group FTP site.
Connect to the FTP site using the ftp function with a user name and password.
Navigate to the Ml _Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file.

f = ftp("ftp.kissellresearch.com®, "username”, "pwd");
cd(F, "MI_Parameters®);
mget(F, "MI_Encrypted_Parameters.csv®);

miData = readtable("MI_Encrypted_Parameters.csv®,“delimiter”,

, ", "ReadRowNames” ,false, "ReadVariableNames” ,true);
miData contains the encrypted market-impact date, code, and parameters.

Create a Kissell Research Group transaction-cost analysis object K. Specify initial
settings for the date, market-impact code, and number of trading days.

k = krg(miData,datetime("today"),1,250);

Load the example data TradeDataBackTest from the MAT-file KRGExampleData.mat,
which is included with the toolbox.

load KRGExampleData TradeDataBackTest

For a description of the example data, see “Kissell Research Group Example Data Set
Description” on page 3-9.

Prepare Data for Back Testing

Determine the number of stocks numRecords in the portfolio.

numRecords = length(TradeDataBackTest.Symbol);

3-43

3 Transaction Cost And|ysis

3-44

Preallocate the output data table o.

o = table(TradeDataBackTest.Symbol,TradeDataBackTest._Side, ...
TradeDataBackTest_Date,NaN(numRecords,1) ,NaN(nhumRecords,1), ...
"VariableNames® ,{"Symbol*,"Side*", "Date”,"MI ", "MIDollar"});

Ensure that the number of shares is a positive value using absolute value.

TradeDataBackTest.Shares = abs(TradeDataBackTest.Shares);

Convert trade time trade strategy to the percentage of volume trade strategy.

TradeDataBackTest.TradeTime = TradeDataBackTest.TradeTime ...
.* TradeDataBackTest.ADV;

TradeDataBackTest.POV = krg.tradetime2pov(TradeDataBackTest.TradeTime, ...
TradeDataBackTest.Shares);

Conduct Back Test by Estimating Historical Market-Impact Costs

Estimate the historical market-impact costs for each stock in the portfolio on different
dates using marketlImpact. Convert market-impact cost from decimal into local dollars.
Retrieve the resulting data in the output data table o.

for i1 = 1:numRecords

k.MiDate = TradeDataBackTest.Date(ii);
k.MiCode = TradeDataBackTest.MICode(ii);
o_MI(ii) = marketlmpact(k,TradeDataBackTest(ii,:));

MIDollars = (TradeDataBackTest.Shares(ii) * TradeDataBackTest._Price(ii)) ...

* o.MI(11)/10000 * TradeDataBackTest.FXRate(ii);
o_MIDollar(ii) = MIDollars;
end
Display the first three rows of output data.
0(1:3,:)
ans =

Symbol Side Date Mi MIDollar

Conduct Back Test on Portfolio

AT 1.00 "5/1/2015" 1.04 103.91
"B* 1.00 "5/1/2015" 3.09 3864.44
"c* 1.00 "5/1/2015" 8.54 5335.03

The output data contains these variables:

* Stock symbol

+ Side

* Historical trade date

+ Historical market-impact cost in basis points

* Historical market-impact value in local dollars

See Also
krg | marketlmpact

Related Examples
. “Conduct Stress Test on Portfolio” on page 3-46
. “Liquidate Dollar Value from Portfolio” on page 3-52

3-45

3 Transaction Cost And|ysis

Conduct Stress Test on Portfolio

3-46

This example shows how to conduct a stress test on a set of stocks using transaction
cost analysis from the Kissell Research Group. Estimate historical market-impact costs
and the corresponding dollar values for the specified date range. With these trading
costs, screen stocks in a portfolio and estimate the cost to liquidate or purchase a
specified number of shares. Analyze trading costs during volatile periods of time such as
a financial crisis, flash crash, or debt crisis.

To access the code for this example, enter edit KRGStressTestingExample.m.
Retrieve Market-Impact Parameters and Load Historical Data

Retrieve the market-impact data from the Kissell Research Group FTP site.
Connect to the FTP site using the ftp function with a user name and password.
Navigate to the Ml _Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file.

f = ftp("ftp.kissellresearch.com®, "username”, "pwd");
cd(f, "MI_Parameters®);
mget(F, "MI_Encrypted_Parameters.csv®);

miData = readtable("MI_Encrypted_Parameters.csv®,"delimiter”,

, ", "ReadRowNames” ,false, "ReadVariableNames” ,true);
miData contains the encrypted market-impact date, code, and parameters.

Load the example data TradeDataStressTest from the MAT-file
KRGExampleData.mat, which is included with the toolbox.

load KRGExampleData TradeDataStressTest

For a description of the example data, see “Kissell Research Group Example Data Set
Description” on page 3-9.

Create a Kissell Research Group transaction-cost analysis object K. Specify initial
settings for the date, market-impact code, and number of trading days.

k = krg(miData,datetime("today"),1,250);
Prepare Data for Stress Testing

Specify the date range from May 1, 2015 through July 31, 2015.

Conduct Stress Test on Portfolio

startDate = "5/1/2015%;
endDate = "7/31/2015";

Determine the number of stocks numStocks in the portfolio. Create a date range
dateRange from the specified dates. Find the number of days numDates in the date
range.

numStocks length(TradeDataStressTest.Symbol);
dateRange (datenum(startDate) :datenum(endDate)) " ;
numDates = length(dateRange);

Preallocate the output data table o.

outLength = numStocks*numDates;

symbols = TradeDataStressTest.Symbol(:,ones(1,numDates));
sides = TradeDataStressTest.Side(:,ones(1,numDates));
dates dateRange(: ,ones(1,numStocks))";

o = table(symbols(:),sides(:),dates(:),NaN(outLength,1),NaN(outLength,1),
"VariableNames® ,{"Symbol*,"Side", "Date”,*MI*,"MIDollar"});

Ensure that the number of shares is a positive value using absolute value.

TradeDataStressTest.Shares = abs(TradeDataStressTest.Shares);

Convert trade time trade strategy to the percentage of volume trade strategy.

TradeDataStressTest.TradeTime = TradeDataStressTest.TradeTime ...
.* TradeDataStressTest.ADV;

TradeDataStressTest.POV = krg.tradetime2pov(TradeDataStressTest.TradeTime,
TradeDataStressTest.Shares);

Conduct Stress Test by Estimating Historical Market-Impact Costs

Estimate the historical market-impact costs for each stock in the portfolio for the date
range using marketlImpact. Convert market-impact cost from decimal into local dollars.
Retrieve the resulting data in the output data table 0.

k =1;
i

k
for i1 = dateRange(1):dateRange(end)

for jj = 1:numStocks

k_MiCode = TradeDataStressTest_MICode(jj):

3-47

3 Transaction Cost And|ysis

k.MiDate = i1i;
o_MI(kk) = marketlmpact(k,TradeDataStressTest(Jj,:)):
o_MIDollar(kk) = (TradeDataStressTest.Shares(Jj) ---

* TradeDataStressTest._Price(jJj)) ---

* o0.MI(kk) /10000 * TradeDataStressTest_FXRate(jJj):;
kk = kk + 1;

end

end

Display the first three rows of output data.

0(1:3,>:)

ans =
Symbol Side Date MI MIDol lar
“AT 1.00 736085.00 3.84 384.31
"B" 1.00 736085.00 11.43 14292 .24
"Cc" 1.00 736085.00 32.69 20430.65

The output data contains these variables:

+ Stock symbol

* Side

* Historical trade date

* Historical market-impact cost in basis points

* Historical market-impact value in local dollars

Retrieve the daily market-impact cost dai lyCost. Determine the number of days

numDays in the output data. Loop through the data and sum the market-impact costs for
individual stocks for each day.

numDays = length(o.Date)/numStocks;

1:numDays

3-48

Conduct Stress Test on Portfolio

dailyCost._Date(i) = o.Date(idx);
dailyCost._DailyMiCost(i) = sum(o-MI(idx:idx+(numStocks-1)));
idx = idx+numStocks;

end

Display the daily market-impact cost in the specified date range.

plot(b.Date,b._DailyMiCost)

ylabel({"Daily Cost","(bps)"})

title("Daily Market-Impact Cost Stress Test")
xlabel ("Date™)

grid on

xData = linspace(b.Date(l),b.Date(92),11);

a = gca;

a.XAxis.TickLabels = datestr(xData, "mm/dd/yyyy~");
a.XTickLabelRotation = 45;

3-49

3 Transaction Cost Ana|ysis

P

E Figurel

175 T

Ddde | k!

File Edit View Inset Tools Desktop Window Help

RLVELA- S| 0EH oD

Daily Market-Impact Cost Stress Test

170

165

Daily Cost
(bps)
a3 2

i

tn

=]
T

145

140

135 '
ty ‘i
{ﬁ? N
P) 2
s ™ ™
& & &

B e e b e e B
R

23
{gaﬁa

P @ P
b
Sl

i ¥ o
A~ v 2 "
£ & A -

Date

This figure demonstrates how market-impact costs change over time.

See Also

krg | marketlImpact

3-50

Conduct Stress Test on Portfolio

Related Examples
. “Conduct Back Test on Portfolio” on page 3-43
. “Liquidate Dollar Value from Portfolio” on page 3-52

3-51

3 Transaction Cost And|ysis

Liquidate Dollar Value from Portfolio

3-52

This example shows how to liquidate a dollar value from a portfolio while minimizing
market-impact costs using transaction cost analysis from the Kissell Research Group.
This example always results in a portfolio that shrinks in size. The market-impact cost
minimization is expressed as

arg min[MI’|x|],
X

where MI is the market-impact cost for the traded shares and x denotes the final weights
for each stock.

This example requires an Optimization Toolbox license. For background information, see
“Optimization Theory Overview”.

The optimization finds a local minimum for the market-impact cost of liquidating a dollar
value from a portfolio. For ways to search for the global minimum, see “Local vs. Global
Optima”.

To access the code for this example, enter edit
KRGLiquidityOptimizationExample.m.

Retrieve Market-Impact Parameters and Load Data

Retrieve the market-impact data from the Kissell Research Group FTP site.
Connect to the FTP site using the Ftp function with a user name and password.
Navigate to the Ml _Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file.

f = fep("ftp.kissellresearch.com®, "username”, "pwd");
cd(f, "MI_Parameters®);
mget(F, "MI_Encrypted_Parameters.csv®);

miData = readtable("MI_Encrypted_Parameters.csv®,“delimiter”,

, ", "ReadRowNames* ,false, "ReadVariableNames® ,true);
miData contains the encrypted market-impact date, code, and parameters.

Create a Kissell Research Group transaction-cost analysis object K. Specify initial
settings for the date, market-impact code, and number of trading days.

Liquidate Dollar Value from Portfolio

k = krg(miData,datetime("today"),1,250);

Load the example data TradeDataPortOpt and the covariance data CovarianceData
from the MAT-file KRGExampleData.mat, which is included with the toolbox. Limit the
data set to the first 10 rows.

load KRGExampleData.mat TradeDataPortOpt CovarianceData

n = 10;

TradeDataPortOpt = TradeDataPortOpt(1:n,:);
CovarianceData = CovarianceData(l:n,1:n);

C = table2array(CovarianceData);

For a description of the example data, see “Kissell Research Group Example Data Set
Description” on page 3-9.

Define Optimization Parameters

Set the portfolio liquidation value to $100,000,000. Set the portfolio risk boundaries
between 90% and 110%. Set the maximum total market-impact cost to 50 basis points.
Determine the number of stocks in the portfolio. Retrieve the upper bound constraint for
the maximum market-impact cost for liquidating shares in each stock.

PortLiquidationValue = 100000000;
PortRiskBounds = [0.9 1.10];

maxTotalMl = 0.005;

numPortStocks = length(TradeDataPortOpt.Symbol);
maxMl = TradeDataPortOpt.UB_MaxMlI ;

Determine the target portfolio value Portfol ioTargetValue by subtracting the
portfolio liquidation value from the total portfolio value.

PortfolioValue = sum(TradeDataPortOpt.Value);

absPortValue = abs(TradeDataPortOpt.Value);
PortfolioAbsValue = sum(absPortValue);

PortfolioTargetValue = PortfolioValue-PortLiquidationValue;

Determine the current portfolio weight w based on the value of each stock in the portfolio.

w = sign(TradeDataPortOpt.Shares).*absPortValue/PortfolioAbsValue;

Specify constraints Aeq and beq to indicate that the weights must sum to one. Initialize
the linear inequality constraints A and b.

Aeq = ones(1,numPortStocks);

3-53

3 Transaction Cost And|ysis

3-54

beq = 1;
A=11;
b = [1;

Retrieve the lower and upper bounds for the final portfolio weight in
TradeDataPortOpt.

LB
UB

TradeDataPortOpt.LB_Wt;
TradeDataPortOpt.UB_Wt;

Determine the lower and upper bounds for the number of shares in the final portfolio
using other optional constraints in the example data set.

IbShares = max([TradeDataPortOpt.LB_MinShares,
TradeDataPortOpt.LB_MinValue./TradeDataPortOpt.Price,
TradeDataPortOpt.LB_MinPctADV.*TradeDataPortOpt._ADV],[].2);

ubShares = min([TradeDataPortOpt.UB_MaxShares,
TradeDataPortOpt.UB_MaxValue./TradeDataPortOpt.Price,
TradeDataPortOpt.UB_MaxPctADV.*TradeDataPortOpt.ADV],[].2);

Specify the initial portfolio weights.

X0 = TradeDataPortOpt.Value./sum(TradeDataPortOpt.Value);
X = X0;

Define optimization options. Set the optimization algorithm to sequential quadratic
programming. Set the termination tolerance on the function value and on x. Set the
tolerance on the constraint violation. Set the termination tolerance on the PCG iteration.
Set the maximum number of function evaluations "MaxFunEvals” and iterations
"Maxlter". The options "MaxFunEvals® and "Maxlter" are set to large values so
that the optimization can iterate many times to find a local minimum. Set the minimum
change in variables for finite differencing.

options = optimoptions(“fmincon®, *Algorithm®,"sqp®, ---.
"TolFun®,10E-8,"TolX",10E-16, "TolCon",10E-8, "TolPCG",10E-8,
"MaxFunEvals®,50000, "Maxlter*® ,50000, "DiffMinChange”,10E-8);

Minimize Market-Impact Costs for Porifolio Liquidation

Define the function handle objectivefun for the sample objective function
krgLiquidityFunction. To access the code for this function, enter edit
krgLiquidityFunction.m. Define the function handle constraintsfun for the

Liquidate Dollar Value from Portfolio

sample function krgLiquidityConstraint that sets additional constraints. To access
the code for this function, enter edit krgLiquidityConstraint.m.

objectivefun = @(x) krgLiquidityFunction(x,TradeDataPortOpt,
PortfolioTargetValue,bk);

constraintsfun = @(x) krgLiquidityConstraint(x,w,C,TradeDataPortOpt,
PortfolioTargetValue,PortRiskBounds, IbShares,ubShares,maxMl ,maxTotalMI,K);

Minimize the market-impact costs for the portfolio liquidation. fmincon finds the
optimal value for the portfolio weight for each stock based on the lower and upper bound
values. It does this by finding a local minimum for the market-impact cost.

[x,~,exitflag] = fmincon(objectivefun,x0,A,b,Aeq,beq,LB,UB,
constraintsfun,options);

To check whether fmincon found a local minimum, display the reason why the function
stopped.

exitflag
exitflag =
1.00

fmincon returns 1 when it finds a local minimum. For details, see exitflag.

Determine the optimized weight value X1 of each stock in the portfolio in decimal format.

x1 = x.*PortfolioTargetValue/PortfolioValue;

Determine the optimized portfolio target value TargetValue and number of shares
SharesToTrade for each stock in the portfolio.

TargetShares = x*PortfolioTargetValue./TradeDataPortOpt.Price;
SharesToTrade = TradeDataPortOpt.Shares-TargetShares;
TargetValue = x*PortfolioTargetValue;

TradeDataPortOpt.Shares = abs(SharesToTrade);

Determine the optimized percentage of volume strategy.
TradeDataPortOpt.TradeTime = TradeDataPortOpt.TradeTime ...

-* TradeDataPortOpt.ADV;
TradeDataPortOpt.POV = krg.tradetime2pov(TradeDataPortOpt.TradeTime,

3-55

3 Transaction Cost And|ysis

3-56

TradeDataPortOpt.Shares);

Estimate the market-impact costs Ml for the number of shares to liquidate.

MI = marketlImpact(k, TradeDataPortOpt)/10000;

To view the market-impact cost in decimal format, specify the display format. Display the
market-impact cost for the first three stocks in the portfolio.

format
MI(1:3)
ans =
1.0e-03 *
0.1477

0.1405
0.1405

To view the target number of shares with two decimal places, specify the display format.
Display the target number of shares for the first three stocks in the portfolio.

format bank
TargetShares(1:3)
ans =

-23640.11

-154656.73
-61193.04

The negative values denote selling shares from the portfolio.
Display the traded value for the first three stocks in the portfolio.
TargetValue(1:3)
ans =

-968062 .45

-1521760.41
-2448131.64

Liquidate Dollar Value from Portfolio

To simulate trading the target number of shares on a historical date range, you can now
conduct a stress test on the optimized portfolio. For details about conducting a stress test,
see “Conduct Stress Test on Portfolio” on page 3-46.

See Also

fmincon | krg | marketlmpact | optimoptions

Related Examples
. “Conduct Stress Test on Portfolio” on page 3-46

“Optimize Trade Schedule Trading Strategy” on page 3-36
. “Optimize Long Portfolio” on page 3-58

3-57

3 Transaction Cost And|ysis

Optimize Long Portfolio

This example shows how to determine the optimal portfolio weights for a specified dollar
value using transaction cost analysis from the Kissell Research Group. The example
portfolio contains only long shares of stock. You can incorporate risk, return, and market-
impact cost during implementation of the investment decision.

This example requires an Optimization Toolbox license. For background information, see
“Optimization Theory Overview”.

The KRGPortfol 1oOptimizationExample function, which you can access by entering

edit KRGPortfolioOptimizationExample.m, addresses three different optimization
scenarios:

1 Maximize the trade-off between net portfolio return and portfolio risk. The trade-off
maximization is expressed as

arg max[R’x—MI’|x|—/lx’Cx],
X

where:

R is the estimated return for each stock in the portfolio.

+ x denotes the weights for each stock in the portfolio.

* Ml is the market-impact cost for the specified dollar value and share quantities.
A 1s the specified risk aversion parameter.

+ Cis the covariance matrix of the stock data.

2 Minimize the portfolio risk subject to a minimum return target using
arg min[x’Cx].
X
3 Maximize net portfolio return subject to a maximum risk exposure target using

arg max[R’x—MI’|x|].
X

3-58 Lower and upper bounds constrain x in each scenario.

Optimize Long Portfolio

Each optimization finds a local optimum. For ways to search for the global optimum, see
“Local vs. Global Optima”.

Retrieve Market-Impact Parameters and Load Data

Retrieve the market-impact data from the Kissell Research Group FTP site.
Connect to the FTP site using the Ftp function with a user name and password.
Navigate to the Ml _Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file.

f = fep("ftp.kissellresearch.com®, "username”, "pwd");
cd(F, "MI_Parameters®);
mget(F, "MI_Encrypted_Parameters.csv®);

miData = readtable("MI_Encrypted_Parameters.csv®,"delimiter”,
*,","ReadRowNames” , false, "ReadVariableNames"” ,true);

miData contains the encrypted market-impact date, code, and parameters.

Create a Kissell Research Group transaction-cost analysis object K. Specify initial
settings for the date, market-impact code, and number of trading days.

k = krg(miData,datetime("today"),1,250);

Load the example data TradeDataPortOpt and the covariance data CovarianceData
from the MAT-file KRGExampleData.mat, which is included with the toolbox. Limit the
data set to the first 50 rows.

load KRGExampleData TradeDataPortOpt CovarianceData

n = 50;
TradeDataPortOpt = TradeDataPortOpt(1l:n,:);
CovarianceData = CovarianceData(l:n,1:n);

For a description of the example data, see “Kissell Research Group Example Data Set
Description” on page 3-9.

Maximize Net Portfolio Return

Run the optimization scenario using the example and covariance data. To run the first
optimization, specify 1 in the last input argument.

[Weight,Shares,Value,MI] = KRGPortfolioOptimizationExample(TradeDataPortOpt,
CovarianceData,l);

3-59

3 Transaction Cost And|ysis

3-60

KRGPortfolioOptimizationExample returns the optimized values for each stock in
the portfolio:

* Portfolio weight
* Number of shares
+ Portfolio dollar value

* Market-impact cost

To run the other two scenarios, specify 2 or 3 in the last input argument of
KRGPortfolioOptimizationExample.

Display the portfolio weight for the first three stocks in the portfolio in decimal format.
format

Weight(1:3)

ans =

0.0100
0.3198
0.1610

Display the number of shares using two decimal places for the first three stocks in the
portfolio.

format bank
Shares(1:3)
ans =

24420.02
3249893.71
402364 .47

Display the portfolio dollar value for the first three stocks in the portfolio.
Value(1:3)
ans =

1000000.00
31977654 .17

Optimize Long Portfolio

16097274 .50

Display the market-impact cost for the first three stocks in the portfolio in decimal
format.

format
MI(1:3)
ans =
1.0e-03 *
0.1250

0.7879
0.3729

See Also

fmincon | krg | marketlmpact | optimoptions

Related Examples
. “Optimize Trade Schedule Trading Strategy” on page 3-36
. “Liquidate Dollar Value from Portfolio” on page 3-52

3-61

Sample Code for Workflows

+ “Listen for X_TRADER Price Updates” on page 4-2

+ “Listen for X_TRADER Price Market Depth Updates” on page 4-4
+ “Submit X_TRADER Orders” on page 4-8

* “Create and Manage a Bloomberg EMSX Order” on page 4-12

+ “Create and Manage a Bloomberg EMSX Route” on page 4-16

+ “Manage a Bloomberg EMSX Order and Route” on page 4-21

* “Create and Manage an Interactive Brokers Order” on page 4-26
+ “Request Interactive Brokers Historical Data” on page 4-32

+ “Request Interactive Brokers Real-Time Data” on page 4-35

* “Create Interactive Brokers Combination Order” on page 4-39

+ “Create CQG Orders” on page 4-45

+ “Request CQG Historical Data” on page 4-51

+ “Request CQG Intraday Tick Data” on page 4-54

+ “Request CQG Real-Time Data” on page 4-58

4 Sample Code for Workflows

Listen for X_TRADER Price Updates

This example shows how to connect to X_TRADER and listen for price update event data.
Connect to X_TRADER

X = xtrdr;

Create an Event Notifier

The event notifier is the X_TRADER mechanism that lets you define MATLAB functions
to use as callbacks for specific events.

createNotifier(X)

Create an Instrument

Create an instrument and attach it to the notifier.

createlnstrument(X, "Exchange®, "CME", "Product®,"2F", ...
"ProdType*, "Future”, "Contract”, "Augl3~, ...
*Alias”, "Pricelnstrumentl®)

X.InstrNotify(l) .Attachlnstrument(X. Instrument(l))

Define Events

Assign callbacks for validating or invalidating an instrument, and for handling data
updates for a previously validated instrument.

registerevent(X. InstrNotify(1),{"OnNotifyFound®, ...
@(varargin)ttinstrumentfound(varargin{:})})

registerevent(X. InstrNotify(1),{"OnNotifyNotFound~, ...
@(varargin)ttinstrumentnotfound(varargin{:})})

registerevent(X. InstrNotify(1),{ OnNotifyUpdate~, ...
@(varargin)ttinstrumentupdate(varargin{:})})

Monitor Events

Set the update filter to monitor the desired fields. In this example, events are monitored
for updates to last price, last quantity, previous last quantity, and a change in prices.
Listen for this event data.

X.InstrNotify(l) .UpdateFilter = "Last$,LastQty$,~LastQty$,Change$”;
X.Instrument(1) .0Open(0)

Listen for X_TRADER Price Updates

The last command tells X_TRADER to start monitoring the attached instruments using
the specified event settings.

Close the Connection

close(X)

See Also

close | createlnstrument | createNotifier | xtrdr

Related Examples

. “Create an Order Using X_TRADER” on page 1-17

. “Listen for X_TRADER Price Market Depth Updates” on page 4-4
. “Submit X_TRADER Orders” on page 4-8

More About
. “Workflows for Trading Technologies X_TRADER” on page 2-4

4-3

4 Sample Code for Workflows

Listen for X_TRADER Price Market Depth Updates

This example shows how to connect to X_TRADER and turn on event handling for level-
two market data (for example, bid and ask orders in the market for an instrument) and
then create a figure window to display the depth data.

Connect to X_TRADER
X = xtrdr;
Create an Event Notifier

Create an event notifier and enable depth updates. The event notifier is the X_TRADER
mechanism lets you define MATLAB functions to use as callbacks for specific events.

createNotifier(X)
X.InstrNotify(l) .EnableDepthUpdates = 1;

Create an Instrument

createlnstrument(X, "Exchange”, "CME", "Product”, "2F", "ProdType”, "Future®, . ..
"Contract”,"Augl3-,"Alias", "PricelnstrumentDepthUpdate*”)

Attach an Instrument to a Notifier

Assign one or more notifiers to an instrument. A notifier can have one or more
instruments attached to it.

X.InstrNotify(l) .Attachlnstrument(X. Instrument(l))
Define Events

Assign callbacks for validating or invalidating an instrument, and updating the example
order book window.

registerevent(X. InstrNotify(1),{"OnNotifyFound”, ...
@ttinstrumentfound})

registerevent(X. InstrNotify(1),{"OnNotifyNotFound~®, ...
@ttinstrumentnotfound})

registerevent(X. InstrNotify(1),{"OnNotifyDepthData", ...
@ttinstrumentdepthupdate})

Set Up the Figure Window

Set up the figure window to display depth data.
f = figure("Numbertitle®,"off","Tag", "TTPriceUpdateDepthFigure”, ...

Listen for X_TRADER Price Market Depth Updates

“Name®,["Order Book - * X.Instrument(l).Alias])
pos = f_Position;
f_Position = [pos(1l) pos(2) 360 315];
f.Resize = "off";

Create Controls

Create controls for the last price data.

bspc = 5;
bwid = 80;
bhgt = 20;

uicontrol ("Style®, "text","String”, "Exchange”,
"Position”,[bspc 4*bspc+3*bhgt bwid bhgt])
uicontrol ("Style®, "text","String”, "Product”,
"Position”,[2*bspctbwid 4*bspc+3*bhgt bwid bhgt])
uicontrol ("Style”, "text","String”, "Type~", ...
"Position”, [3*bspc+2*bwid 4*bspc+3*bhgt bwid bhgt])
uicontrol ("Style®, "text","String”, "Contract”,
"Position”, [4*bspc+3*bwid 4*bspc+3*bhgt bwid bhgt])
ui.Exchange = uicontrol("Style®, "text","Tag"," ", -.
"Position”,[bspc 3*bspc+2*bhgt led bhgt])
ui.Product = uicontrol("Style”, "text","Tag","", ..
"Position” [2*bspc+bW|d 3*bspc+2*bhgt led bhgt]);
ui.Type = uicontrol("Style”,"text","Tag","", ...
"Position” [3*bSpC+2*bWId 3*bspc+2*bhgt bwid bhgt]);
ui.Contract = uicontrol("Style®, "text","Tag","", -.
"Position”, [4*bspc+3*bwid 3*bspc+2*bhgt bW|d bhgt]);
uicontrol("Style”, "text","String", "Last Price”
"Position”,[bspc 2*bspc+bhgt bwid bhgt])
uicontrol ("Style®, "text","String”, "Last Qty", ...
"Position”,[2*bspctbwid 2*bspc+bhgt bwid bhgt])
uicontrol ("Style®, "text","String”, "Change”,
"Position”, [3*bspc+2*bwid 2*bspc+bhgt bwid bhgt])
ui.Last = uicontrol("Style”, "text","Tag","",---
"Position”,[bspc bspc bwid bhgtl);
ui.Quantity = uicontrol("Style”, "text","Tag","", ...
"Position”,[2*bspc+bwid bspc bwid bhgt]);

ui.Change = uicontrol("Style”, "text","Tag","", .
"Position” [3*bSpC+2*bWId bspc bwid bhgt])

Create a Table

Create a table containing order information.

4-5

4 Sample Code for Workflows

ata(ones(10,4));
uitable("Data”,data, "ColumnName®, . ..
{"Bid", "Bid Size","Ask","Ask Size"},...
"Position”,[5 105 350 205]);

{" "'}
d

Store Data

setappdata(0, "TTOrderBookHandle" ,uibook)
setappdata(0, "TTOrderBookUIData" ,ui)

Listen for Event Data

Listen for event data with depth updates enabled.

X. Instrument(l) .Open(l)

B Order Book - PricelnstrumentDepthUpdate E=REE X

File Edit View Insert Tools Desktop Window Help
Bid Bid Size Ask | AskSize |
1 |46 2055 15
I Exchange Product Type Contract
CHE 2F FUTURE 2F May13
I Last Price Last Qty Change
51 20 5

The last command instructs X_TRADER to start monitoring the attached instruments
using the specified event settings.

Listen for X_TRADER Price Market Depth Updates

Close the Connection

close(X)

See Also

close | createlnstrument | createNotifier | getData | xtrdr

Related Examples

. “Create an Order Using X_TRADER” on page 1-17
. “Listen for X_TRADER Price Updates” on page 4-2
. “Submit X_TRADER Orders” on page 4-8

More About
. “Workflows for Trading Technologies X_TRADER” on page 2-4

4-7

4 Sample Code for Workflows

Submit X_TRADER Orders

This example shows how to connect to X_TRADER and submit orders.

Connect to X_TRADER

X = xtrdr;

Create an Instrument

createlnstrument(X, "Exchange”, "CME", "Product”, "2F", ...
"ProdType*, "Future”, “"Contract”, "Augl3~, ...

"Alias”, "SubmitOrderInstrumentl™)

Register Event Handlers

Register event handlers for the order server. The callback ttorderserverstatus
is assigned to the event OnExchangeStateUpdate to verify that the requested
instrument’s exchange order server is running. Otherwise, no orders can be submitted.

sExchange = X.Instrument.Exchange;
registerevent(X.Gate,{"OnExchangeStateUpdate”, ...
@(varargin)ttorderserverstatus(varargin{:},sExchange)})

Create an Order Set
The OrderSet object sends orders to X_TRADER.
Set properties of the OrderSet object and detail the level of the order status events.

Enable order update and reject (failure) events so you can assign callbacks to handle
these conditions.

createOrderSet(X)
X.0rderSet(1) .EnableOrderRejectData = 1;
X.0rderSet(1) .EnableOrderUpdateData = 1;

X.0rderSet(1) .0rderStatusNotifyMode "ORD_NOTIFY_NORMAL";
Set Position Limit Checks

Set whether the order set checks self-imposed position limits when submitting an order.

X.OrderSet(1).Set("NetLimits",false)

4-8

Submit X_TRADER Orders

Set a Callback Function

Set a callback to handle the OnOrderFilled events. Each time an order is filled (or
partially filled), this callback is invoked.

registerevent(X.OrderSet(1),{"OnOrderFilled", ...
@(varargin)ttorderevent(varargin{:},X)})

Enable Order Submission

You must first enable order submission before you can submit orders to X_TRADER.
X.0rderSet(1) .0pen(1)

Build an Order Profile

Build an order profile using an existing instrument. The order profile contains the
settings that define a submitted order. The valid Set parameters are shown:

orderProfile = createOrderProfile(X);
orderProfile.Instrument = X.Instrument(l);
orderProfile.Customer = "<Default>";
Sample: Create a Market Order

Create a market order to buy 100 shares.

orderProfile.Set("BuySell”, "Buy®)
orderProfile.Set("Qty~,100)
orderProfile.Set("OrderType”,"M")

Sample: Create a Limit Order
Create a limit order by setting the OrderType and limit order price.

orderProfile.Set("OrderType”, L")
orderProfile.Set("Limit$","1270007)

Sample: Create a Stop Market Order
Create a stop market order and set the order restriction to a stop order and a stop price.
orderProfile._Set("OrderType”,"M")

orderProfile._Set("OrderRestr®,"S")
orderProfile.Set("Stop$~, "1298007)

4 Sample Code for Workflows

4-10

Sample: Create a Stop Limit Order

Create a stop limit order and set the order restriction, type, limit price, and stop price.

orderProfile.Set("OrderType”, L")
orderProfile.Set("OrderRestr®,"S")
orderProfile.Set("Limit$","128000")
orderProfile.Set("Stop$~™,"127500")

Check the Order Server Status

Check the order server status before submitting the order and add a counter so the
example doesn’t delay.

nCounter = 1;

while ~exist("bServerUp®,“"var®) && nCounter < 20
pause(1)
nCounter = nCounter + 1;

end

Verify the Order Server Availability

Verify that the exchange’s order server in question is available before submitting the
order.

if exist("bServerUp®,"var®) && bServerUp
submittedQuantity = X.OrderSet(1l).SendOrder(orderProfile);
disp(["Quantity Sent: " num2str(submittedQuantity)])

else
disp("Order Server is down. Unable to submit order*®)

end

Close the Connection

close(X)

See Also

close | createlnstrument | createOrderProfile | createOrderSet | xtrdr

Related Examples
. “Create an Order Using X_TRADER” on page 1-17
. “Listen for X_TRADER Price Updates” on page 4-2

Submit X_TRADER Orders

. “Listen for X_TRADER Price Market Depth Updates” on page 4-4

More About
. “Workflows for Trading Technologies X_TRADER” on page 2-4

4-11

4 Sample Code for Workflows

Create and Manage a Bloomberg EMSX Order

4-12

This example shows how to connect to Bloomberg EMSX, create an order, and interact
with the order.

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

Connect to Bloomberg EMSX

Connect to the Bloomberg EMSX test service. Display the current event queue contents
using processEvent.

c = emsx("//blp/emapisvc_beta®);
processEvent(c)

CcC =
emsx with properties:

Session: [1x1 com.bloomberglp.blpapi.Session]
Service: [1x1 com.bloomberglp.blpapi.impl._aQ]
Ipaddress: "localhost”
Port: 8194

SessionConnectionUp = {
server = localhost/127.0.0.1:8194
}

SessionStarted = {

}

ServiceOpened = {
serviceName = //blp/emapisvc_beta

¥
MATLAB returns c as the connection to the Bloomberg EMSX test service with the

following:

* Bloomberg EMSX session object

* Bloomberg EMSX service object

+ IP address of the machine running the Bloomberg EMSX test service

+ Port number of the machine running the Bloomberg EMSX test service

Create and Manage a Bloomberg EMSX Order

processEvent displays events associated with connecting to Bloomberg EMSX.
Set Up the Order Subscription

Subscribe to order events using the Bloomberg EMSX connection € associated with these
Bloomberg EMSX fields.

fields = {"EMSX_TICKER","EMSX_AMOUNT", "EMSX_FILL"};

[events,subs] = orders(c,fields)

events =
MSG_TYPE: {"E"}
MSG_SUB_TYPE: {"0"}
EVENT_STATUS: 4
subs =

com.bloomberglp.blpapi.SubscriptionList@4bc3dc78

events contains fields for the events associated with the existing Bloomberg EMSX
orders. subs contains the Bloomberg EMSX subscription list object.

Create the Order

Create an order request structure order for a buy market order of 400 shares of IBM.
Specify the broker as EF1X, use any hand instruction, and set the time in force to DAY.

order .EMSX_ORDER_TYPE = “MKT";
order_EMSX_SIDE = "BUY";

order .EMSX_TICKER = "IBM";
order .EMSX_AMOUNT = int32(400);
order .EMSX_BROKER = "EFIX";

order_EMSX_HAND_INSTRUCTION = “ANY";
order _.EMSX_TIF = "DAY";

Create the order using the Bloomberg EMSX connection ¢ and the order request
structure order.

events = createOrder(c,order)

order_events =

EMSX_SEQUENCE: 354646

4-13

4 Sample Code for Workflows

4-14

MESSAGE: "Order created”

The default event handler processes the events associated with creating the order.
createOrder returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX message

Modify the Order

Define the structure modorder that contains these fields:

* Bloomberg EMSX order sequence number EMSX_ SEQUENCE
* Bloomberg EMSX ticker symbol EMSX_TICKER
* Bloomberg EMSX number of shares EMSX_AMOUNT

This code modifies order number 354646 for 200 shares of IBM. Convert the numbers to
32-bit signed integers using int32.

modorder .EMSX_SEQUENCE = int32(354646);
modorder .EMSX_TICKER "I1BM";
modorder .EMSX_AMOUNT int32(200);

Modify the order using the Bloomberg EMSX connection ¢ and modify order structure
modorder.

events = modifyOrder(c,modorder)

events =

EMSX_SEQUENCE: 354646
MESSAGE: "Order Modified”

The default event handler processes the events associated with modifying an order.
modifyOrder returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX message

Delete the Order

Define the structure ordernum that contains the order sequence number 354646 for the
order to delete. Delete the order using the Bloomberg EMSX connection ¢ and the delete
order number structure ordernum.

Create and Manage a Bloomberg EMSX Order

ordernum_EMSX_SEQUENCE = 354646;

events = deleteOrder(c,ordernum)

events =

STATUS: "0O°
MESSAGE: "Order deleted”

The default event handler processes the events associated with deleting an order.
deleteOrder returns events as a structure that contains these fields:

* Bloomberg EMSX status
* Bloomberg EMSX message

Stop the Order Subscription
Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
c.Session.unsubscribe(subs)

Close the Bloomberg EMSX Connection

close(c)

See Also

close | createOrder | deleteOrder | emsx | modifyOrder | orders

Related Examples

. “Create an Order Using Bloomberg EMSX” on page 1-14

. “Create and Manage a Bloomberg EMSX Route” on page 4-16
. “Manage a Bloomberg EMSX Order and Route” on page 4-21

More About
. “Workflow for Bloomberg EMSX” on page 2-2

4-15

4 Sample Code for Workflows

Create and Manage a Bloomberg EMSX Route

4-16

This example shows how to connect to Bloomberg EMSX, set up a route subscription,
create and route an order, and interact with the route.

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

Connect to Bloomberg EMSX

Connect to the Bloomberg EMSX test service. Display the current event queue contents
using processEvent.

c = emsx("//blp/emapisvc_beta®);
processEvent(c)

CcC =
emsx with properties:

Session: [1x1 com.bloomberglp.blpapi.Session]
Service: [1x1 com.bloomberglp.blpapi.impl._aQ]
Ipaddress: "localhost”
Port: 8194

SessionConnectionUp = {
server = localhost/127.0.0.1:8194
}

SessionStarted = {

}

ServiceOpened = {
serviceName = //blp/emapisvc_beta

¥
MATLAB returns c as the connection to the Bloomberg EMSX test service with the

following:

* Bloomberg EMSX session object

* Bloomberg EMSX service object

+ IP address of the machine running the Bloomberg EMSX test service

+ Port number of the machine running the Bloomberg EMSX test service

Create and Manage a Bloomberg EMSX Route

processEvent displays events associated with connecting to Bloomberg EMSX.
Set Up the Route Subscription

Set up the route subscription for Bloomberg EMSX fields EMSX_BROKER and
EMSX_WORKING using the Bloomberg EMSX connection c. Return the status for existing
routes.

fields = {"EMSX_BROKER", "EMSX_WORKING"};

[events,subs] = routes(c,fields)

events =
MSG_TYPE: {5x1 cell}
MSG_SUB_TYPE: {5x1 cell}
EVENT_STATUS: [5x1 int32]
subs =

com.bloomberglp.blpapi.SubscriptionList@463b9287

events contains fields for the events currently in the event queue. subs contains the
Bloomberg EMSX subscription list object.

Create and Route the Order

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order .EMSX_TICKER = "IBM";

order .EMSX_AMOUNT = int32(100);
order .EMSX_ORDER_TYPE = "MKT";
order_.EMSX_BROKER = "BB~";

order .EMSX_TIF = "DAY";
order.EMSX_HAND_INSTRUCTION = “ANY";
order.EMSX_SIDE = "BUY";

Create and route the order using the Bloomberg EMSX connection ¢ and the order
request structure order.

events = createOrderAndRoute(c,order)

4-17

4 Sample Code for Workflows

4-18

events =

EMSX_SEQUENCE: 335877
EMSX_ROUTE_ID: 1
MESSAGE: "Order created and routed”

The default event handler processes the events associated with creating and routing the
order. createOrderAndRoute returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier
+ Bloomberg EMSX message

Modify the Route
Define the modroute structure that contains these fields:

* Bloomberg EMSX order sequence number EMSX_SEQUENCE
* Bloomberg EMSX ticker symbol EMSX_TICKER

* Bloomberg EMSX number of shares EMSX_AMOUNT

* Bloomberg EMSX route identifier EMSX_ROUTE_ 1D

This code modifies the route to 50 shares of IBM for order sequence number 335877 and
route identifier 1. Convert the numbers to 32-bit signed integers using Int32.

modroute .EMSX_SEQUENCE = int32(335877)
modroute .EMSX_TICKER = "IBM";

modroute .EMSX_AMOUNT = int32(50);
modroute.EMSX_ROUTE_ID = int32(1);

Modify the route using the Bloomberg EMSX connection ¢ and modify route request
modroute.

events = modifyRoute(c,modroute)

events =

EMSX_SEQUENCE: 0
EMSX_ROUTE_ID: O
MESSAGE: "Route modified”

The default event handler processes the events associated with modifying a route.
modi fyRoute returns events as a structure that contains these fields:

Create and Manage a Bloomberg EMSX Route

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier
* Bloomberg EMSX message

Delete the Modified Route

Define the structure routenum that contains the order sequence number
EMSX_SEQUENCE and the route number EMSX ROUTE_ ID associated with the modified
route.

0;

0;

routenum.EMSX_SEQUENCE
routenum.EMSX_ROUTE_ID

Delete the route using the Bloomberg EMSX connection ¢ and delete route number
structure routenum.

events = deleteRoute(c, routenum)
events =

STATUS: "1°
MESSAGE: "Route cancellation request sent to broker*®

The default event handler processes the events associated with deleting a route.
deleteRoute returns events as a structure that contains these fields:

+ Bloomberg EMSX status
* Bloomberg EMSX message

Stop the Route Subscription

Unsubscribe from route events using the Bloomberg EMSX subscription list object subs.
c.Session.unsubscribe(subs)

Close the Bloomberg EMSX Connection

close(c)

See Also

close | createOrderAndRoute | deleteRoute | emsx | modifyRoute |
routeOrder | routes

4-19

4 Sample Code for Workflows

Related Examples

. “Create an Order Using Bloomberg EMSX” on page 1-14
. “Create and Manage a Bloomberg EMSX Order” on page 4-12
. “Manage a Bloomberg EMSX Order and Route” on page 4-21

More About
. “Workflow for Bloomberg EMSX” on page 2-2

4-20

Manage a Bloomberg EMSX Order and Route

Manage a Bloomberg EMSX Order and Route

This example shows how to connect to Bloomberg EMSX, set up an order and route
subscription, create and route an order, and interact with the route.

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

Connect to Bloomberg EMSX

Connect to the Bloomberg EMSX test service. Display the current event queue contents
using processEvent.

c = emsx("//blp/emapisvc_beta®™);
processEvent(c)

CcC =
emsx with properties:

Session: [1x1 com.bloomberglp.blpapi.Session]
Service: [1x1 com.bloomberglp.blpapi.impl._aQ]
Ipaddress: "localhost”
Port: 8194

SessionConnectionUp = {
server = localhost/127.0.0.1:8194
}

SessionStarted = {

}

ServiceOpened = {
serviceName = //blp/emapisvc_beta

}

MATLAB returns ¢ as the connection to the Bloomberg EMSX test service with the
following:

* Bloomberg EMSX session object
* Bloomberg EMSX service object
+ IP address of the machine running the Bloomberg EMSX test service

4-21

4 Sample Code for Workflows

4-22

* Port number of the machine running the Bloomberg EMSX test service
processEvent displays events associated with connecting to Bloomberg EMSX.
Set Up the Order and Route Subscription

Subscribe to order events using the Bloomberg EMSX connection € associated with these
Bloomberg EMSX fields.

fields = {"EMSX_TICKER", "EMSX_AMOUNT ", "EMSX_FILL"};

[events,osubs] = orders(c,fields)

events =
MSG_TYPE: {"E"}
MSG_SUB_TYPE: {"0"}
EVENT_STATUS: 4
osubs =

com.bloomberglp.blpapi.SubscriptionList@4bc3dc78

events contains fields for the events associated with the existing Bloomberg EMSX
orders. osubs contains the Bloomberg EMSX subscription list object.

Subscribe to route events for the Bloomberg EMSX fields EMSX_BROKER and
EMSX_WORKING using the Bloomberg EMSX connection c. Return the status for existing
routes.

fields = {"EMSX_BROKER", "EMSX_WORKING"};

[events,rsubs] = routes(c,fields)

events =
MSG_TYPE: {5x1 cell}
MSG_SUB_TYPE: {5x1 cell}
EVENT_STATUS: [5x1 int32]

rsubs =

com_bloomberglp.blpapi.SubscriptionList@463b9287

Manage a Bloomberg EMSX Order and Route

events contains fields for the events currently in the event queue. rsubs contains the
Bloomberg EMSX subscription list object.

Create and Route the Order

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order .EMSX_TICKER "IBM*";

order .EMSX_AMOUNT = int32(100);
order .EMSX_ORDER_TYPE = “MKT";
order .EMSX_BROKER = "BB";

order .EMSX_TIF = "DAY";

order .EMSX_HAND_INSTRUCTION = "ANY~";
order .EMSX_SIDE = "BUY";

Create and route the order using the Bloomberg EMSX connection ¢ and the order
request structure order.

events = createOrderAndRoute(c,order)

events =

EMSX_SEQUENCE: 335877
EMSX_ROUTE_ID: 1
MESSAGE: "Order created and routed”

The default event handler processes the events associated with creating and routing the
order. createOrderAndRoute returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier
+ Bloomberg EMSX message

Modify the Route
Define the modroute structure that contains these fields:

* Bloomberg EMSX order sequence number EMSX SEQUENCE
* Bloomberg EMSX ticker symbol EMSX_TICKER
* Bloomberg EMSX number of shares EMSX_AMOUNT

4-23

4 Sample Code for Workflows

4-24

* Bloomberg EMSX route identifier EMSX_ROUTE_ 1D

This code modifies the route to 50 shares of IBM for order sequence number 335877 and
route identifier 1. Convert the numbers to 32-bit signed integers using Int32.

modroute .EMSX_SEQUENCE = int32(335877)
modroute .EMSX_TICKER = "IBM";

modroute .EMSX_AMOUNT = int32(50);
modroute .EMSX_ROUTE_ID = int32(1);

Modify the route using the Bloomberg EMSX connection ¢ and modify route request
modroute.

events = modifyRoute(c,modroute)

events

EMSX_SEQUENCE: O
EMSX_ROUTE_ID: O
MESSAGE: "Route modified”

The default event handler processes the events associated with modifying a route.
modifyRoute returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier
+ Bloomberg EMSX message

Delete the Route

Define the structure routenum that contains the order sequence number
EMSX_SEQUENCE for the routed order and route number EMSX_ROUTE_ ID.

routenum.EMSX_SEQUENCE
routenum.EMSX_ROUTE_ID

0;

0;

Delete the route using the Bloomberg EMSX connection ¢ and delete route number
structure routenum.

events = deleteRoute(c, routenum)

events =

STATUS: *"1°

Manage a Bloomberg EMSX Order and Route

MESSAGE: "Route cancellation request sent to broker*®

The default event handler processes the events associated with deleting a route.
deleteRoute returns events as a structure that contains these fields:

+ Bloomberg EMSX status
* Bloomberg EMSX message

Stop the Order and Route Subscription

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX Connection

close(c)

See Also

close | createOrderAndRoute | deleteRoute | emsx | modifyRoute | orders |
routes

Related Examples

. “Create an Order Using Bloomberg EMSX” on page 1-14

. “Create and Manage a Bloomberg EMSX Order” on page 4-12
. “Create and Manage a Bloomberg EMSX Route” on page 4-16

More About
. “Workflow for Bloomberg EMSX” on page 2-2

4-25

4 Sample Code for Workflows

Create and Manage an Interactive Brokers Order

This example shows how to connect to the IB Trader Workstation, request open order
data, create IB Trader Workstation IContract and 10rder objects, and execute the
order. For details about the IContract and 10rder objects, see Interactive Brokers API
Reference Guide.

This example uses the sample event handler function 1bExampleOrderEventHandler
to populate an order blotter figure with Interactive Brokers order information. Use this
event handler or write a custom event handler function. For details, see “Writing and
Running Custom Event Handler Functions with Interactive Brokers” on page 1-28.

To access the code for this example, enter edit 1BOrderWorkflow.m.

Connect to the IB Trader Workstation

Connect to the IB Trader Workstation and create connection ib using the local host and
port number 7496.

ib = ibtws("",7496);
Create an Example Order Blotter
Create an example order blotter that the event handler populates.

This MATLAB code creates a MATLAB figure to contain the Interactive Brokers order
information.

f = findobj("Tag”, "1BOrderBlotter”);
it isempty(f)
f = figure("Tag", "IBOrderBlotter”, “*MenuBar", "none”, .. .
“NumberTitle", "off","Name", "IB Order Blotter")
pos = f.Position;
f.Position = [pos(1) pos(2) 687 335];
colnames = {"Status”,"Filled", "Remaining”,"Avg Fill Price","1d",
"Parent 1d","Last Fill Price”,"Client 1d","Why Held"};
data = cell(15,9);
uitable(f, "Data”,data, "RowName”, [], "ColumnName*,colnames, . ..
“Position”,[10 30 677 300],"Tag", "OrderDataTable™)
uicontrol ("Style”, "text", "Position”,[10 5 592 20], ...
"Tag", "1BOrderMessage™)
uicontrol ("Style”, "pushbutton”, "String”, "Close”, . ..
“Callback”,"evalin(""base" ", ""close(ib);close(findobj(""""Tag" """, """ "1BOrderBlotter*"""));"")",
"Position”,[607 5 80 20])
end

MATLAB displays the IB Order Blotter.

4-26

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

Create and Manage an Interactive Brokers Order

T‘T 1B Order Blotter EI@
Status Filled Remaining | Avg Fill Price Id ParentId | LastFill Price| ClientId Why Held
Request Open Order Data

Request information for all open orders using only this client and the sample event
handler ibExampleOrderEventHandler.

o0 = orders(ib,true,@ibExampleOrderEventHandler);

0 is an empty double because ibExampleOrderEventHandler displays the data for all
open orders in the IB Order Blotter.

4-27

4 Sample Code for Workflows

4] 1B Order Blotter EI@
Status Filled Remaining | Avg Fill Price Id ParentId | LastFill Price| ClientId Why Held
Submitted 380774580 0 0
Close

Create the IB Trader Workstation 1Contract and 10rder Obijects

Create the IB Trader Workstation IContract object ibContract. Here, this object
describes a security with these property values:

* XYZ symbol

+ Stock security type

+ Aggregate exchange

* Primary exchange

+ USD currency

XYZ is a sample symbol name and EX is a sample primary exchange name. To create
orders for your security, substitute the symbol name in ibContract.symbol and
primary exchange name in ibContract.primaryExchange.

ibContract = ib.Handle.createContract;
ibContract._symbol = "XYZ";
ibContract._secType = °"STK";
ibContract._exchange = "SMART";
ibContract._primaryExchange = "EX";
ibContract.currency = “USD*®

4-28

Create and Manage an Interactive Brokers Order

ibContract =

Interface.Tws_ActiveX Control _module.lContract

Create the IB Trader Workstation 10rder object ibOrder for a buy market order for two
shares.

ibOrder = ib.Handle.createOrder;
ibOrder.action = "BUY";
ibOrder._totalQuantity = 2;
ibOrder.orderType = "MKT"
ibOrder =

Interface.Tws_ActiveX_ Control_module.lOrder
ibOrder contains the action, total quantity, and order type.
Create the Interactive Brokers Order

Obtain the next valid order identification number using IB Trader Workstation
connection ib.

id = orderid(ib);

Execute the buy market order for two shares using the unique order identifier id and
sample event handler ibExampleOrderEventHandler.

createOrder(ib, ibContract, ibOrder, id,@ibExampleOrderEventHandler)

MATLAB displays order information in the IB Order Blotter. The IB Order Blotter shows
the open order and the filled order.

4-29

4 Sample Code for Workflows

4] 1B Order Blotter EI@
Status Filled Remaining | Avg Fill Price Id ParentId | LastFill Price| ClientId Why Held
Submitted 380774580 0 0
Filled 2 0 7.6300 380774590 0 7.6300 0
Close

Cancel the Interactive Brokers Order

ib.Handle.cancelOrder(id)

After canceling the existing order, create an order by modifying the IB Trader
Workstation 10rder object ibOrder. Then, create the order by executing createOrder.

Cancel all open Interactive Brokers orders.
ib.Handle.reqGlobalCancel

This method cancels all open Interactive Brokers orders globally. The order is canceled
despite where it is created.

Close the Connection

Close the IB Trader Workstation connection ib.

close(ib)

See Also

close | createOrder | getdata | history | ibtws | orderid | orders |
timeseries

4-30

Create and Manage an Interactive Brokers Order

Related Examples
. “Create an Order Using IB Trader Workstation” on page 1-8

. “Create Interactive Brokers Combination Order” on page 4-39
. “Request Interactive Brokers Historical Data” on page 4-32

. “Request Interactive Brokers Real-Time Data” on page 4-35

More About

. “Workflow for Interactive Brokers” on page 2-6

“Writing and Running Custom Event Handler Functions with Interactive Brokers”
on page 1-28

External Websites

. Interactive Brokers API Reference Guide

4-31

http://www.interactivebrokers.com/en/software/api/api.htm

4 Sample Code for Workflows

Request Interactive Brokers Historical Data

This example shows how to connect to the IB Trader Workstation, create an IB Trader
Workstation 1Contract object, and request historical data. For details about the
IContract object, see Interactive Brokers API Reference Guide. To access the code for
this example, enter edit IBHistoricalDataWorkflow.m.

Connect to the IB Trader Workstation and Create the 1Contract Obiject

Connect to the IB Trader Workstation and create connection ib using the local host and
port number 7496.

ib = ibtws("",7496);

MATLAB returns ib as the connection to the IB Trader Workstation with the Interactive
Brokers ActiveX® object, the local host, and the port number that you choose.

Create the IB Trader Workstation IContract object ibContract. Here, this object
describes a security with these property values:

* XYZ symbol

+ Stock security type

+ Aggregate exchange

* Primary exchange

+ USD currency

XYZ is a sample symbol name and EX is a sample primary exchange name. To create
orders for your security, substitute the symbol name in ibContract.symbol and
primary exchange name in ibContract.primaryExchange.

ibContract = ib.Handle.createContract;
ibContract._symbol = "XYZ";
ibContract.secType = "STK";
ibContract.exchange = "SMART";
ibContract.primaryExchange = "EX";
ibContract.currency = "USD"

ibContract =

Interface.Tws_ActiveX Control _module.lIContract

4-32

http://www.interactivebrokers.com/en/software/api/api.htm

Request Interactive Brokers Historical Data

Request Interactive Brokers Historical Data

Request the last 5 days of historical data using ibContract.

startdate = floor(how) - 5;

enddate

Columns 1

736308.
736309.
736312.
736313.

Columns 6

12513.
15984.
17125.

1935.

d contains the historical data for 5 days.
Each row of d contains historical data for 1 day. The columns in matrix d are:

* Numeric representation of a date

through 5

00 751.
00 742.
00 743.
00 752.
through 9

00 9107.
00 11121.
00 11355.
00 2371.

* Open price

* High price

* Low price

* Close price

* Volume

* Bar count

* Weighted average price

floor(now);

755.
745.
748.
758.

751.
740.
736.
751.

d = history(ib, ibContract,startdate,enddate)
d

743.83
736.75
724.17
744 .43

[eNeoNoNe]

+ Flag indicating if there are gaps in the bar

Close the Connection

Close the IB Trader Workstation connection ib.

close(ib)

See Also

close | createOrder | getdata | history | ibtws | timeseries

749.46
738.20
748.48
750.45

4-33

4 Sample Code for Workflows

4-34

Related Examples
. “Create an Order Using IB Trader Workstation” on page 1-8

“Create Interactive Brokers Combination Order” on page 4-39

“Create and Manage an Interactive Brokers Order” on page 4-26

“Request Interactive Brokers Real-Time Data” on page 4-35

More About

. “Workflow for Interactive Brokers” on page 2-6

External Websites

. Interactive Brokers API Reference Guide

http://www.interactivebrokers.com/en/software/api/api.htm

Request Interactive Brokers Real-Time Data

Request Interactive Brokers Real-Time Data

This example shows how to connect to the IB Trader Workstation, create IB Trader
Workstation 1Contract objects, and request real-time data. For details about the
IContract object, see Interactive Brokers API Reference Guide.

This example uses the sample event handler function
ibExampleRealtimeEventHandler to handle events associated with requesting real-
time data. Use this event handler or write a custom event handler function. For details,
see “Writing and Running Custom Event Handler Functions with Interactive Brokers” on
page 1-28.

Here, AAA, BBB, and DDDD are sample symbol names. EX is a sample
primary exchange name. To create orders for your securities, substitute
symbol names in ibContract.symbol and primary exchange names in
ibContract.primaryExchange.

To access the code for this example, enter edit 1BStreamingDataWorkflow.m.
Connect to the IB Trader Workstation and Create the Real-Time Data Display Figure

Connect to the IB Trader Workstation and create connection ib using the local host and
port number 7496.

ib = ibtws("",7496);

MATLAB returns b as the connection to the IB Trader Workstation with the Interactive
Brokers ActiveX object, the local host, and the port number that you choose.

To display real-time data, create an example figure.

This MATLAB code creates a MATLAB figure to contain the Interactive Brokers real-
time data.

f = findobj("Tag", "IBStreamingDataWorkflow®™);
if isempty(f)
f = figure("Tag", " IBStreamingDataWorkflow", *MenuBar*", "*none~, ...
“NumberTitle®, "off")
pos = f_Position;
f.Position = [pos(1l) pos(2) pos(3)+37 109];
colnames = {"Trade", "Size", "Bid", "BidSize", "Ask", "AskSize", ...
"Total Volume~©};
rownames = {"AAA","BBB","DDDD"};
data = cell(3,6);
uitable(f, "Data”,data, "RowName ", rownames, “ColumnName*,colnames, - . .
“Position”,[10 30 582 76],"Tag”, "SecurityDataTable™)
uicontrol ("Style”, "text”, "Position”,[10 5 497 20],"Tag", " I1BMessage”)

4-35

http://www.interactivebrokers.com/en/software/api/api.htm

4 Sample Code for Workflows

uicontrol ("Style”, "pushbutton®, *String~”, "Close”, . ..
“Callback®, ...
“evalin(""base"",""close(ib);close(findobj(""""Tag" """, """ " IBStreamingDataWorkflow®"""));"")", ..
“Position”,[512 5 80 20])
end

MATLAB displays the empty figure.

] [E=EE =)
Trade Size Bid BidSize Ask AskSize |Total Volume
AdA
BEE
oooD

Create IB Trader Workstation 1Contract Objects

Create the IB Trader Workstation IContract object for the first security. Here, this
object describes a security with these property values:

* AAA symbol

+ Stock security type

+ Aggregate exchange

* Primary exchange

+ USD currency

ibContractl = ib.Handle.createContract;
ibContractl_symbol = "AAA";
ibContractl._secType = °"STK";
ibContractl._exchange = "SMART";

ibContractl._primaryExchange = "EX";
ibContractl._currency = "USD";

Create the IB Trader Workstation 1Contract object for the second security symbol BBB.

ibContract2 = ib.Handle.createContract;
ibContract2.symbol = "BBB-";
ibContract2.secType = "STK";
ibContract2.exchange = "SMART";
ibContract2.primaryExchange = "EX";
ibContract2.currency = "USD";

Create the IB Trader Workstation 1Contract object for the third security symbol DDDD.

4-36

Request Interactive Brokers Real-Time Data

ibContract3 = ib.Handle.createContract;
ibContract3.symbol = "DDDD";
ibContract3.secType = "STK";
ibContract3.exchange = "SMART";
ibContract3.primaryExchange = "EX";
ibContract3.currency = "USD";

Display the data in the symbol property of ibContractl.
ibContractl.symbol

ans =
AAA

Request real-time data for the three securities. Set f to 100 to retrieve the

Option Volume tick type. For details about other generic market data tick types,

see Interactive Brokers API Reference Guide. Use the sample event handler
ibExampleRealtimeEventHandler to process the real-time data events or write a
custom event handler function.

contracts = {ibContractl;ibContract2;ibContract3};
f = "100";

tickerlID = realtime(ib,contracts,f, ...
@(varargin) ibExampleRealtimeEventHandler(varargin{:}));

MATLAB displays the figure populated with real-time data for stock symbols AAA, BBB,

and DDDD.
= B |_-"-‘h]
Trade Size Bid BidSize Ask AszkSize | Total Volume
ARA T87.3300 1 Tar 1 T&7.8000 1 306
BEBE 283100 2 28.3100 1 28.3100 41 FET
oooo 232300 1 231700 4 23.3500 10 123

Close the Connection

Close the IB Trader Workstation connection ib.

4-37

http://www.interactivebrokers.com/en/software/api/api.htm

4 Sample Code for Workflows

close(ib)

See Also

close | createOrder | getdata | history | ibtws | timeseries

Related Examples
. “Create an Order Using IB Trader Workstation” on page 1-8

. “Create Interactive Brokers Combination Order” on page 4-39

. “Create and Manage an Interactive Brokers Order” on page 4-26

. “Request Interactive Brokers Historical Data” on page 4-32

More About

. “Workflow for Interactive Brokers” on page 2-6

. “Writing and Running Custom Event Handler Functions with Interactive Brokers”
on page 1-28

External Websites

. Interactive Brokers API Reference Guide

4-38

http://www.interactivebrokers.com/en/software/api/api.htm

Create Interactive Brokers Combination Order

Create Interactive Brokers Combination Order

This example shows how to connect to the IB Trader Workstation, create IB Trader
Workstation IContract and ICombolLegList objects, and create a combination order
for a calendar spread. A calendar spread is one of many combination order strategies.
This strategy takes advantage of different stock option expiration dates. This example

creates a buy order on a calendar spread for Google®. For details about I1Contract
objects, 1ComboLegL ist objects, and combination orders, see Interactive Brokers API
Reference Guide.

This example uses the sample event handler function ibExampleEventHandler to
handle events associated with creating a combination order. Use this event handler or
write a custom event handler function. For details, see “Writing and Running Custom
Event Handler Functions with Interactive Brokers” on page 1-28.

To access the code for this example, enter edit IBCombinationOrder.m.
Connect to the IB Trader Workstation

Connect to the IB Trader Workstation and create connection ib using the local host and
port number 7496.

ib = ibtws("",7496);

MATLAB returns ib as the connection to the IB Trader Workstation with the Interactive
Brokers ActiveX object, the local host, and the port number that you choose.

Create IB Trader Workstation 1Contract Obijects

Create the IB Trader Workstation 1Contract object ibContractl. Here, this object
describes the first call option in the calendar spread. Create an IContract object with
these property values:

+ Google symbol.

+ Stock option.

+ Expiry date is August 2014.

+ Strike price is $535.00.

+ (Call option.

* Number of shares is 100.

+ Aggregate exchange.

4-39

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

4 Sample Code for Workflows

4-40

* Primary exchange

+ USD currency.

Here, EX is a sample primary exchange name. Substitute your primary exchange name in
ibContractl.primaryExchange.

ibContractl = ib.Handle.createContract;
ibContractl.symbol = "GOOG";
ibContractl.secType = "OPT";
ibContractl.expiry "201408";
ibContractl.strike 535;
ibContractl.right = "C";
ibContractl.multiplier = "1007;
ibContractl.exchange = "SMART";
ibContractl.primaryExchange = "EX";
ibContractl.currency = "USD";

Request contract details for ibContractl.

[cdl, ibReqlD1l] = contractdetails(ib,ibContractl);

cd1 returns the contract details data for ibContractl. ibReqlD1 returns the request
identifier for this contract details request.

Create the IB Trader Workstation 1Contract object ibContract2. Here, this object
describes the second call option in the calendar spread. Create an 1Contract object with
these property values:

* Google symbol.

* Stock option.

+ Expiry date is September 2014.

+ Strike price is $535.00.

+ Call option.

* Number of shares is 100.

+ Aggregate exchange.

* Primary exchange

+ USD currency.

Here, EX is a sample primary exchange name. Substitute your primary exchange name in
ibContract2._primaryExchange.

Create Interactive Brokers Combination Order

ibContract2 = ib.Handle.createContract;
ibContract2._symbol = "GOOG";
ibContract2._secType = "OPT";
ibContract2_expiry "201409";
ibContract2.strike 535;
ibContract2._right = "C";
ibContract2_multiplier = "100°;
ibContract2_exchange = "SMART";
ibContract2._primaryExchange = "EX";
ibContract2._currency = "USD";

Request contract details for ibContract2.

[cd2, ibReqlD2] = contractdetails(ib,ibContract2);

cd2 returns the contract details data for ibContract2. ibReqlID2 returns the request
identifier for this contract details request.

Create IB Trader Workstation 1ComboLegL ist Object

To define the legs of the combination order, create the IB Trader Workstation
ICombolLegList object combolLegs.

comboLegs = ib.Handle.createCombolLegList;

Here, this combination order has two legs. Add the first leg to combolLegs. The first leg
contains these property values:

+ IB Trader Workstation contract identifier for the first contract.

* One-to-one leg ratio.

+ Sell the call option.

+ Aggregate exchange.

* Identify an open or close order based on the parent security.

+ IB Trader Workstation routes the order without a designated broker.

* Blank designated broker.

ibLegl = combolLegs.Add;
ibLegl.conld = cdl.summary.conld;
ibLegl.ratio = 1;

ibLegl.action = "SELL";
ibLegl.exchange = "SMART";
ibLegl.openClose = 0;

4-41

4 Sample Code for Workflows

4-42

ibLegl.shortSaleSlot = 0;
ibLegl.designatedLocation = "°;

Add the second leg to combolLegs. The second leg contains these property values:

* IB Trader Workstation contract identifier for the second contract.
* One-to-one leg ratio.

* Buy the call option.

+ Aggregate exchange.

+ Identify an open or close order based on the parent security.

+ IB Trader Workstation routes the order without a designated broker.
* Blank designated broker.

ibLeg2 = combolLegs.Add;

ibLeg2.conld = cd2.summary.conid;

ibLeg2.ratio = 1;

ibLeg2.action = "BUY";

ibLeg2.exchange = "SMART";

ibLeg2.openClose = 0;

ibLeg2.shortSaleSlot = 0;
ibLeg2.designatedLocation = "°;

Create the Interactive Brokers Combination Order

Create the IB Trader Workstation 1Contract object orderContract for the
combination order. Create an 1Contract object with these property values:

* Google symbol

* Combination order type BAG

+ Aggregate exchange

* Primary exchange

+ USD currency

* IB Trader Workstation ICombolLegList object combolLegs

Here, EX is a sample primary exchange name. Substitute your primary exchange name in
orderContract.primaryExchange.

orderContract = ib.Handle.createContract;
orderContract.symbol = "GOOG";

Create Interactive Brokers Combination Order

orderContract.secType = "BAG";
orderContract._exchange = "SMART";
orderContract.primaryExchange = "EX";
orderContract.currency = "USD";
orderContract.combolLegs = combolLegs;

Create the IB Trader Workstation 10rder object ibOrder. Here, the combination order
1s a market order to buy one combination of the two legs.

ibOrder = ib.Handle.createOrder;
ibOrder.action = "BUY";
ibOrder.totalQuantity = 1;
ibOrder.orderType = “MKT";

Request the next valid order identification number id using orderid.
id = orderid(ib);
Execute the combination order ibOrder using these arguments:

+ IB Trader Workstation connection ib

* Combination order IContract object orderContract
+ IB Trader Workstation 10rder object ibOrder

* Order identifier id

* Sample event handler ibExampleEventHandler

o
1

createOrder(ib,orderContract, ibOrder, id,@ibExampleEventHandler)

768413.00
d returns the unique order identifier for this combination order.
Close the Connection

Close the IB Trader Workstation connection ib.

close(ib)

See Also

close | contractdetails | createOrder | ibtws | orderid

4-43

4 Sample Code for Workflows

Related Examples
. “Create an Order Using IB Trader Workstation” on page 1-8

. “Create and Manage an Interactive Brokers Order” on page 4-26
. “Request Interactive Brokers Historical Data” on page 4-32

. “Request Interactive Brokers Real-Time Data” on page 4-35

More About

. “Workflow for Interactive Brokers” on page 2-6

“Writing and Running Custom Event Handler Functions with Interactive Brokers”
on page 1-28

External Websites

. Interactive Brokers API Reference Guide

4-44

http://www.interactivebrokers.com/en/software/api/api.htm

Create CQG Orders

Create CQG Orders

This example shows how to connect to CQG, define the event handlers, subscribe to the
security, define the account handle, and submit orders for execution.

Create the CQG Connection

Create the CQG connection object using cqg.
c = cq9;

Define Event Handlers

Register the sample event handler cqgconnectioneventhandler to track events
associated with the connection status.
eventNames = {"CELStarted”, "DataError”, " IsReady”,
"DataConnectionStatusChanged®,
"GWConnectionStatusChanged®,
"GWEnvironmentChanged”};

for i = 1:length(eventNames)
registerevent(c.Handle,{eventNames{i}, -
@(varargin)cqggconnectioneventhandler(varargin{:})})
end

cqgconnectioneventhandler is assigned to the events in eventNames.

Set the API configuration properties. For example, to set the time zone to Eastern Time,
enter the following.

c.APIConfig.TimeZoneCode = "tzEastern”;

c.APIConfigis a CQG configuration object. For details about setting API configuration
properties, see CQG API Reference Guide.

Establish the connection to CQG.
startUp(c)
CELStarted

DataConnectionStatusChanged
GWConnectionStatusChanged

4-45

4 Sample Code for Workflows

4-46

The connection event handler displays event names for a successful CQG connection.

Register an event handler to track events associated with a CQG instrument
subscription.

streamEventNames = {"InstrumentSubscribed”, " InstrumentChanged”,
"IncorrectSymbol "};

for i = 1:length(streamEventNames)
registerevent(c.Handle,{streamEventNames{i}, .
@(varargin)cqgrealtimeeventhandler(varargin{:})})
end

Register an event handler to track events associated with a CQG order and account.

orderEventNames = {"AccountChanged”, "OrderChanged”, "AllOrdersCanceled"};

for i1 = 1l:length(orderEventNames)
registerevent(c.Handle,{orderEventNames{i},
@(varargin)cqggordereventhandler(varargin{:})})
end

Subscribe to the CQG Instrument

With the connection established, subscribe to the CQG instrument. The instrument

must be successfully subscribed first before it is available for transactions. You must
format the instrument name in the CQG long symbol view. For example, to subscribe to a
security tied to the EURIBOR, enter the following.

realtime(c,"F.US.IE")
pause(2)

F.US.1EK13 subscribed

pause causes MATLAB to wait 2 seconds before continuing to give time for CQG to
subscribe to the instrument.

Create the CQG instrument object.

To use the instrument in createOrder, import the name of the instrument
cqglnstrumentName into the current MATLAB workspace. Then, create the
CQGInstrument object cqglnst.

cqglnstrumentName = evalin(“base”, "cqglnstrument®);
cqglnst = c.Handle.Instruments. ltem(cqglnstrumentName);

Create CQG Orders

Set Up Account Credentials

Set the CQG flags to enable account information retrieval.

set(c.Handle, "AccountSubscriptionLevel®, "asINone™)

set(c.Handle, "AccountSubscriptionLevel *, "aslAccountUpdatesAndOrders*®)
pause(2)

ans =
AccountChanged

The CQG API shows that account information changed.
Set up the CQG account credentials.

Retrieve the CQGAccount object into accountHandle to use your account information in
createOrder. For details about creating a CQGAccount object, see CQG API Reference
Guide.

accountHandle = c.Handle.Accounts. ItemBylndex(0);
Create CQG Market, Limit, Stop, and Stop Limit Orders

Create a market order that buys one share of the subscribed security cqglnst using the
account credentials accountHandle.

quantity = 1;

oMarket = createOrder(c,cqglnst,1l,accountHandle,quantity);
oMarket_Place

ans =
OrderChanged

The CQGOrder object oMarket contains the order. The CQG API executes the market
order using the CQG API function Place. After execution, the order status changes.

To use a character vector for the security, subscribe to the security "EZC" as shown
above. Then, create a market order that buys one share of the security "EZC*" using the
defined account credentials accountHandle.

cqglinstrumentName = "EZC";
quantity = 1;

4-47

4 Sample Code for Workflows

4-48

oMarket = createOrder(c,cqglnstrumentName,1l,accountHandle,quantity);
oMarket.Place

ans =
OrderChanged

The CQGOrder object oMarket contains the order. The CQG API executes the market
order using the CQG API function Place. After execution, the order status changes.

To create a limit order, you can use the bid price. Extract the CQG bid object qtBid
from the previously defined CQGInstrument object cqglnst. For details about the
CQGInstrument object, see CQG API Reference Guide.

gtBid = cqglnst.get("Bid");

Create a limit order that buys one share of the previously subscribed security cqglnst
using the previously defined account credentials accountHandle and qtBid for the
limit price.

quantity = 1;

limitprice qtBid.get("Price");

oLimit = createOrder(c,cqglnst,2,accountHandle,quantity, limitprice);
oLimit_Place
ans =

OrderChanged

The CQGOrder object oLimit contains the order. The CQG API executes the limit order
using the CQG API function Place. After execution, the order status changes.

To create a stop order, you can use the trade price. Extract the CQG trade object
qtTrade from the previously defined CQGlnstrument object cqglnst.

qtTrade = cqglnst.get("Trade®);

Create a stop order that buys one share of the previously subscribed security cqglnst
using the previously defined account credentials accountHandle and gqtTrade for the
stop price.

quantity = 1;
stopprice = qtTrade.get("Price”);

oStop = createOrder(c,cqglnst,3,accountHandle,quantity,stopprice);

Create CQG Orders

oStop-Place

ans =
OrderChanged

The CQGOrder object 0Stop contains the order. The CQG API executes the stop order
using the CQG API function Place. After execution, the order status changes.

To create a stop limit order, use both the bid and trade prices defined above. Create a
stop limit order that buys one share of the subscribed security cqglnst using the defined
account credentials accountHandle.

quantity = 1;
oStopLimit = createOrder(c,cqglnst,4,accountHandle,quantity,
limitprice,stopprice);

oStopLimit.Place

ans =
OrderChanged

The CQGOrder object oStopLimit contains the order. The CQG API executes the stop
limit order using the CQG API function Place. After execution, the order status changes.

Close the CQG Connection

shutDown(c)

See Also

close | cqg | createOrder | history | realtime | shutDown | startUp |
timeseries

Related Examples

. “Create an Order Using CQG” on page 1-12

. “Request CQG Historical Data” on page 4-51

. “Request CQG Real-Time Data” on page 4-58

. “Request CQG Intraday Tick Data” on page 4-54

More About
. “Workflow for CQG” on page 2-8

4-49

4 Sample Code for Workflows

External Websites
CQG API Reference Guide

4-50

http://partners.cqg.com/api-resources/technical-documentation

Request CQG Historical Data

Request CQG Historical Data

This example shows how to connect to CQG, define event handlers, and request historical
data.

Connect to CQG

Create the CQG connection object using cqg.
c = cq9;

Define Event Handlers

Register the sample event handler cqgconnectioneventhandler to track events
associated with connection status.

eventNames = {"CELStarted”, "DataError”,"IsReady”,
"DataConnectionStatusChanged®};

for 1 = 1:length(eventNames)
registerevent(c.Handle,{eventNames{i}, -
@(varargin)cqggconnectioneventhandler(varargin{:})})
end

cqgconnectioneventhandler is assigned to the events in eventNames.

Set the API configuration properties. For example, to set the time zone to Eastern Time,
enter the following.

c.APIConfig.TimeZoneCode = "tzEastern-;

c.APIConfigis a CQG configuration object. For details about setting API configuration
properties, see CQG API Reference Guide.

Create the CQG connection.
startUp(c)

CELStarted
DataConnectionStatusChanged

The connection event handler displays event names for a successful CQG connection.

Register an event handler to build and initialize the output data matrix
cqgHistoryData.

4-51

4 Sample Code for Workflows

4-52

histEventNames = {"ExpressionResolved”, "ExpressionAdded”,
"ExpressionUpdated”};

for 1 = 1l:length(histEventNames)
registerevent(c.Handle,{histEventNames{i}, -
@(varargin)cqggexpressioneventhandler(varargin{:})})
end

Pass an Additional Optional Request Property

Pass an additional optional request property by creating the structure X and setting the
optional property.

X.UpdatesEnabled = false;
For additional optional properties you can set, see CQG API Reference Guide.
Request CQG Historical Data

Request daily data for instrument XYZ.XYZ for the last 10 days using the additional
optional request property X. XYZ.XYZ is a sample instrument name. To request historical
data for your instrument, substitute the symbol name in instrument.

instrument = {"Close(XYZ.XYZ)","Open(XYZ.XYZ)"};
startdate = floor(now) - 10;

enddate = floor(now);

period = "hpDaily”;

history(c, instrument,startdate,enddate,period,Xx)
pause(1)

MATLAB writes the variable cqgHistoryData to the Workspace browser.

Display cqgHistoryData.

cqgHistoryData

cqgHistoryData =
1.0e+05 *
7.3533 0.0063 0.0063
7.3533 0.0064 0.0064
7.3533 0.0065 0.0065
7.3534 0.0065 0.0065
7.3534 0.0066 0.0066
7.3534 0.0065 0.0065

Request CQG Historical Data

7.3534 0.0066 0.0066
7.3534 0.0066 0.0066
7.3534 0.0064 0.0064

Each row in cqgHistoryData represents data for 1 day. The columns in
cqgHistoryData show the numerical representation of the timestamp, the close price,
and the open price for the instrument during the day.

Close the CQG Connection

close(c)

See Also

close | cqg | createOrder | history | realtime | shutDown | startUp |
timeseries

Related Examples

. “Create an Order Using CQG” on page 1-12

. “Create CQG Orders” on page 4-45

. “Request CQG Real-Time Data” on page 4-58

. “Request CQG Intraday Tick Data” on page 4-54

More About
. “Workflow for CQG” on page 2-8

External Websites
. CQG API Reference Guide

4-53

http://partners.cqg.com/api-resources/technical-documentation

4 Sample Code for Workflows

Request CQG Intraday Tick Data

4-54

This example shows how to connect to CQG, define event handlers, and request intraday
and timed bar data.

Connect to CQG and Define Event Handlers
Create the CQG connection object using cqg.
C = cqg;

Register the sample event handler cqgconnectioneventhandler to track events
associated with the connection status.

eventNames = {"CELStarted", "DataError”, "IsReady”,
"DataConnectionStatusChanged®};

for i = 1:length(eventNames)
registerevent(c.Handle,{eventNames{i}, .
@(varargin)cggconnectioneventhandler(varargin{:})})
end

cqgconnectioneventhandler is assigned to the events in eventNames.

Set the API configuration properties. For example, to set the time zone to Eastern Time,
enter the following.

c.APIConfig.TimeZoneCode = "tzEastern”;

c.APIConfigis a CQG configuration object. For details about setting API configuration
properties, see CQG API Reference Guide.

Create the CQG connection.

startUp(c)

CELStarted
DataConnectionStatusChanged

The connection event handler displays event names for a successful CQG connection.

Register an event handler to build and initialize the output data structure cqgTickData
used for storing intraday tick data.

rawEventNames = {"TicksResolved®, "TicksAdded"};

Request CQG Intraday Tick Data

for 1 = 1:length(rawEventNames)
registerevent(c.Handle,{rawEventNames{i}, --..
@(varargin)cqgintradayeventhandler(varargin{:})})
end

Request CQG Intraday Tick Data

Pass an additional optional request property by creating the structure X, and setting the
optional property. To see only bid tick data, for example, set TickFilter to "tfBid".

x.TickFilter = “"tfBid";

TickFilter and SessionsFilter are the only valid additional optional properties for

calling timeseries without a timed bar request. For additional property values you can
set, see CQG API Reference Guide.

Request intraday tick data for instrument XYZ.XYZ for the last 2 days using the
additional optional request property X. XYZ_.XYZ is a sample instrument name.
To request intraday tick data for your instrument, substitute the symbol name in
instrument.

instrument = "XYZ_XYZ";
startdate = now - 2;
enddate = now;

timeseries(c, instrument,startdate,enddate,[],x)
pause(1)

pause causes MATLAB to wait 1 second before continuing to give time for CQG
to subscribe to the instrument. MATLAB writes the variable cqgTickData to the
Workspace browser.

Display cqgTickData.
cqgTickData

cqgTickData =
Timestamp: {2x1 cell}
Price: [2x1 double]
Volume: [2x1 double]
PriceType: {2x1 cell}
CorrectionType: {2x1 cell}
SalesConditionLabel: {2x1 cell}

4-55

4 Sample Code for Workflows

4-56

SalesConditionCode: [2x1 double]
Contributorld: {2x1 cell}

ContributorldCode: [2x1 double]
MarketState: {2x1 cell}

Display data in the Timestamp property of cqgTickData.
cqgTickData.Timestamp

ans =
"4/17/2013 2:14:00 PM*
"4/18/2013 2:14:00 PM*

Request CQG Timed Bar Data

Register an event handler to build and initialize the output data matrix
cqgTimedBarData used for storing timed bar data.

aggEventNames = {"TimedBarsResolved”, "TimedBarsAdded”,
"TimedBarsUpdated®, "TimedBarslnserted®,
"TimedBarsRemoved"};

for i = 1:length(aggEventNames)
registerevent(c.Handle,{aggEventNames{i}, 3
@(varargin)cqggintradayeventhandler(varargin{:})})
end

Pass additional optional request properties by creating the structure X, and setting the
optional property.

X.UpdatesEnabled = false;

Request timed bar data for instrument XYZ . XYZ for the last fraction of a day using
the additional optional request property X. XYZ.XYZ is a sample instrument name. To
request timed bar data for your instrument, substitute the symbol name in instrument.

instrument = "XYZ_XYZ";
startdate = now - .1;
enddate = now;

intraday = 1;

timeseries(c, instrument,startdate,enddate, intraday, x)
pause(1)

MATLAB writes the variable cqgTimedBarData to the Workspace browser.

Request CQG Intraday Tick Data

Display cqgTimedBarData

cqgTimedBarData

cqgTimedBarData =
1.0e+09 *
.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475

r OO0 O0OO0OOo

.1475
-2.
-2.
.1475
-2.

1475
1475

1475

.1475
-2.
-2.
.1475
-2.

1475
1475

1475

.1475
-2.
-2.
.1475
-2.

1475
1475

1475

cqgTimedBarData returns timed bar data for the specified instrument. The columns of
cqgTimedBarData display data corresponding to the timestamp, open price, high price,
low price, close price, mid-price, HLC3, average price, and tick volume.

Close the CQG Connection

close(c)

See Also

close | cqg | createOrder | history | realtime | shutDown | startUp |

timeseries

Related Examples

. “Create an Order Using CQG” on page 1-12

. “Create CQG Orders” on page 4-45

. “Request CQG Historical Data” on page 4-51
. “Request CQG Real-Time Data” on page 4-58

More About
. “Workflow for CQG” on page 2-8

External Websites
. CQG API Reference Guide

4-57

http://partners.cqg.com/api-resources/technical-documentation

4 Sample Code for Workflows

Request CQG Real-Time Data

4-58

This example shows how to connect to CQG, define event handlers, and request current
data.

Connect to CQG

Create the CQG connection object using cqg.
c = cq9;

Define Event Handlers

Register the sample event handler cqgconnectioneventhandler to track events for
the connection status.

eventNames = {"CELStarted", "DataError-”,"IsReady”, .
"DataConnectionStatusChanged” , "GWConnectionStatusChanged®,
"GWEnvironmentChanged~”};

for i1 = 1:length(eventNames)
registerevent(c.Handle,{eventNames{i}, -
@(varargin)cggconnectioneventhandler(varargin{:})})
end

cqgconnectioneventhandler is assigned to the events in eventNames.

Set the API configuration properties. For example, to set the time zone to Eastern Time,
enter the following.

c.APIConfig.TimeZoneCode = "“tzEastern~;

c.APIConfigis a CQG configuration object. For details about setting the API
configuration properties, see CQG API Reference Guide.

Establish the connection to CQG.

startUp(c)

CELStarted
DataConnectionStatusChanged
GWConnectionStatusChanged

The connection event handler displays event names for a successful CQG connection.

Request CQG Real-Time Data

Register an event handler to track events associated with the CQG instrument
subscription.

streamEventNames = {"InstrumentSubscribed”, " InstrumentChanged”,
" IncorrectSymbol "} ;

for i = 1l:length(streamEventNames)
registerevent(c.Handle,{streamEventNames{i}, .
@(varargin)cqgrealtimeeventhandler(varargin{:})})
end

Request CQG Real-Time Data

With the connection established, subscribe to the instrument. The instrument name must
be formatted in the CQG long symbol view. For example, to subscribe to a security tied to
corn, enter the following.

instrument = "F_US.EZC";
realtime(c, instrument)

MATLAB writes the structure variable cqgDataEZC to the Workspace browser.

Display cqgDataEZC.
cqgbataEzC(1,1)

ans =
Price: {15x1 cell}

Volume: {15x1 cell}
ServerTimestamp: {15x1 cell}
Timestamp: {15x1 cell}

Type: {15x1 cell}

Name: {15x1 cell}

Isvalid: {15x1 cell}

Instrument: {15x1 cell}
HasVolume: {15x1 cell}

cqgDataEZC returns the current quotes for the security.

Display data in the Price property of cqgDataEZC.
cqgbataEZC(1,1).Price

ans =
[-2.1475e+09]

4-59

4 Sample Code for Workflows

.1475e+09]
.1475e+09]
660.5000]

[SS = |
NN

.1475e+09]
.1475e+09]
.1475e+09]
.1475e+09]
.1475e+09]
.1475e+09]
.1475e+09]

660.5000]
.1475e+09]

Close the CQG Connection

|
NNNNNNDN

o Ll e e Fon o R Fo Fo F e e W R R

1
N

close(c)

See Also

close | cqg | createOrder | history | realtime | shutDown | startUp |
timeseries

Related Examples

. “Create an Order Using CQG” on page 1-12

. “Create CQG Orders” on page 4-45

. “Request CQG Historical Data” on page 4-51

. “Request CQG Intraday Tick Data” on page 4-54

More About
. “Workflow for CQG” on page 2-8

External Websites
. CQG API Reference Guide

4-60

http://partners.cqg.com/api-resources/technical-documentation

Functions — Alphabetical List

5 Functions — Alphabetical List
P

5-2

emsx

Create Bloomberg EMSX connection

Syntax

c = emsx(servicename)

Description

c = emsx(servicename) creates a connection to the local Bloomberg EMSX
communications server using the service servicename.

Examples

Connect to the Bloomberg EMSX Test Service

Create a connection c to the Bloomberg EMSX test service. You can place test calls using
this service.

c = emsx("//blp/emapisvc_beta®)

CcC =
emsx with properties:

Session: [1x1 com.bloomberglp.blpapi.Session]
Service: [1x1 com.bloomberglp.blpapi.impl.aQ]
Ipaddress: "localhost®
Port: 8194

MATLAB returns c as the connection to the Bloomberg EMSX test service with the
following:

* Bloomberg EMSX session object

* Bloomberg EMSX service object

+ IP address of the machine running the Bloomberg EMSX test service

* Port number of the machine running the Bloomberg EMSX test service

emsx

Close the Bloomberg EMSX connection.

close(c)
Connect to the Bloomberg EMSX Production Service

Create a connection ¢ to the Bloomberg EMSX production service. You can place live
calls using this service.

c emsx("//bmp/emapisvc®)

CcC =
emsx with properties:

Session: [1x1 com.bloomberglp.blpapi.Session]
Service: [1x1 com.bloomberglp.blpapi.impl._aQ]
Ipaddress: "localhost*®
Port: 8194

MATLAB returns c as the connection to the Bloomberg EMSX test service with the
following:

* Bloomberg EMSX session object

* Bloomberg EMSX service object

+ TP address of the machine running the Bloomberg EMSX production service

* Port number of the machine running the Bloomberg EMSX production service

Close the Bloomberg EMSX connection.

close(c)
. “Create an Order Using Bloomberg EMSX” on page 1-14
. “Create and Manage a Bloomberg EMSX Order” on page 4-12

. “Create and Manage a Bloomberg EMSX Route” on page 4-16
. “Manage a Bloomberg EMSX Order and Route” on page 4-21

Input Arguments

servicename — Bloomberg EMSX service name
*//blp/emapisvc_beta® | *//bmp/emapisvc*

5-3

5 Functions — Alphabetical List
P

5-4

Bloomberg EMSX service name, specified as one of these connection types.

Connection Type Bloomberg EMSX Service Name
Test *//blp/emapisvc_beta”
Production *//bmp/emapisvc*
Output Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, returned as a connection object with these
properties.

Property Description

Session Bloomberg EMSX session object

Service Bloomberg EMSX service object

Ipaddress IP address of the machine where

Bloomberg EMSX is running

Port Port number of the machine where
Bloomberg EMSX is running

More About

Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

“Workflow for Bloomberg EMSX” on page 2-2

See Also

close | createOrder | createOrderAndRoute | routeOrder

Introduced in R2013a

close

close

Close Bloomberg EMSX connection

Syntax

close(c)

Description

close(c) closes the Bloomberg EMSX connection C.

Examples

Close the Bloomberg EMSX Connection
Create the Bloomberg EMSX connection c.

c = emsx("//blp/emapisvc_beta®);
Close the Bloomberg EMSX connection.
close(c)

“Create an Order Using Bloomberg EMSX” on page 1-14
“Create and Manage a Bloomberg EMSX Order” on page 4-12
“Create and Manage a Bloomberg EMSX Route” on page 4-16
“Manage a Bloomberg EMSX Order and Route” on page 4-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

5-5

5 Functions — Alphabetical List
P

More About
Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

“Workflow for Bloomberg EMSX” on page 2-2

See Also

createOrder | createOrderAndRoute | emsx | routeOrder

Introduced in R2013a

5-6

createOrder

createOrder

Create Bloomberg EMSX order

Syntax

events = createOrder(c,order)
events createOrder(c,order, "timeOut",timeout)

createOrder(, "useDefaultEventHandler® ,false)

= createOrder(,c,order,options)

Description

events = createOrder(c,order) creates a Bloomberg EMSX order using the
Bloomberg EMSX connection ¢ and order request order that contains the required
fields for creating an order. createOrder returns the order sequence number and status
message using the default event handler.

events = createOrder(c,order, "timeOut”,timeout) specifies a timeout value
timeout for the execution of the default event handler.

createOrder(___ ,"useDefaultEventHandler" ,false) creates a Bloomberg
EMSX order using any of the input arguments in the previous syntaxes and a custom
event handler. Write a custom event handler to process the events associated with
creating orders. This syntax does not have an output argument because the custom event
handler processes the contents of the event queue. If you want to use the default event
handler instead, set the flag "useDefaul tEventHandler” to true and use the events
output argument. By default, the flag "useDefaultEventHandler"” is set to true.

____ = createOrder(,c,order,options) uses the options structure to customize
the output, which is useful to preconfigure and save your options for repeated use. The
available options structure fields are timeOut and useDefaul tEventHandler. Use
the events output argument when useDefaultEventHandler is set to true and omit
this output argument when useDefaultEventHandler is set to false.

5 Functions — Alphabetical List
P

Examples

Create an Order Using the Default Event Handler

To create a Bloomberg EMSX order, create the connection ¢ using emsx and set up the
order subscription using orders. For an example showing these activities, see “Create
and Manage a Bloomberg EMSX Order” on page 4-12.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order _.EMSX_TICKER = "IBM";

order .EMSX_AMOUNT = int32(100);
order _.EMSX_ORDER_TYPE = "MKT";

order _.EMSX_BROKER = "BB~;

order _EMSX_TIF = "DAY";

order .EMSX_HAND_INSTRUCTION = "ANY";
order _EMSX_SIDE = "BUY";

Create the order using the Bloomberg EMSX connection ¢ and order.
events = createOrder(c,order)

events =

EMSX_SEQUENCE: 354646
MESSAGE: "Order created”

The default event handler processes the events associated with creating the order.
createOrder returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes that orders creates subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

createOrder

close(c)
Create an Order Using a Timeout

To create a Bloomberg EMSX order, create the connection ¢ using emsx and set up the
order subscription using orders. For an example showing these activities, see “Create
and Manage a Bloomberg EMSX Order” on page 4-12.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order .EMSX_TICKER = "IBM";

order .EMSX_AMOUNT = int32(100);
order .EMSX_ORDER_TYPE = “MKT";

order .EMSX_BROKER = "BB";

order .EMSX_TIF = "DAY";

order .EMSX_HAND_INSTRUCTION = “ANY~";
order .EMSX_SIDE = "BUY";

Create the order using the Bloomberg EMSX connection ¢ and order. Set the timeout
value to 200 milliseconds.

events = createOrder(c,order, "timeOut”,b200)

events

EMSX_SEQUENCE: 354646
MESSAGE: "Order created”

The default event handler processes the events associated with creating the order.
createOrder returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes that orders creates subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

5 Functions — Alphabetical List
P

5-10

close(c)
Create an Order Using a Custom Event Handler

To create a Bloomberg EMSX order, create the Bloomberg EMSX connection C using
emsx and set up the order subscription using orders. For an example showing these
activities, see “Create and Manage a Bloomberg EMSX Order” on page 4-12.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order .EMSX_TICKER "IBM*";

order .EMSX_AMOUNT int32(100);
order .EMSX_ORDER_TYPE = “MKT";

order .EMSX_BROKER = "BB";

order .EMSX_TIF = "DAY";

order .EMSX_HAND_INSTRUCTION = "ANY~";
order .EMSX_SIDE = "BUY";

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-25.

t = timer("TimerFcn®,{@c.-eventhandler}, "Period”,1, ...
"ExecutionMode® , "fixedRate")
start(t)

t is the MATLAB timer object. For details, see timer.

Create the order using the Bloomberg EMSX connection ¢ and order. Set the flag
"useDefaultEventHandler" to False so that eventhandler processes the events
associated with creating an order.

createOrder(c,order, "useDefaul tEventHandler*, false)

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes that orders creates subs. Stop the timer to stop data updates using
stop.

c.Session.unsubscribe(subs)
stop(t)

createOrder

If you are done processing data updates, delete the timer using delete.
delete(t)
Close the Bloomberg EMSX connection.

close(c)
Create an Order Using an Options Structure

To create a Bloomberg EMSX order, create the connection ¢ using emsx and set up the
order subscription using orders. For an example showing these activities, see “Create
and Manage a Bloomberg EMSX Order” on page 4-12.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order .EMSX_TICKER "IBM*";

order .EMSX_AMOUNT int32(100);
order .EMSX_ORDER_TYPE = “MKT";

order .EMSX_BROKER = "BB";

order .EMSX_TIF = "DAY";

order .EMSX_HAND_INSTRUCTION = "ANY~";
order .EMSX_SIDE = "BUY";

Create a structure options. To use the default event handler, set the field
useDefaultEventHandler to true. Set the field timeOut to 200 milliseconds. Create
the order using the Bloomberg EMSX connection ¢, order, and options structure
options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = createOrder(c,order,options)

events

EMSX SEQUENCE: 354646
MESSAGE: "Order created”

The default event handler processes the events associated with creating the order.
createOrder returns events as a structure that contains these fields:

5-11

5 Functions — Alphabetical List
P

5-12

* Bloomberg EMSX order number
+ Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.

This code assumes that orders creates subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 4-12
. “Create and Manage a Bloomberg EMSX Route” on page 4-16
. “Manage a Bloomberg EMSX Order and Route” on page 4-21

Input Arguments

¢ — Bloomberg EMSX service connection

connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

order — Order request
structure

Order request, specified as a structure using Bloomberg EMSX field properties. Use
getAlIFieldMetaData to view all available field property options for order. Convert
the number of shares to a 32-bit signed integer using Int32. order contains these fields.

Field

Description

EMSX_TICKER

Bloomberg EMSX ticker symbol

EMSX_AMOUNT

Bloomberg EMSX amount of shares

EMSX_ORDER_TYPE

Bloomberg EMSX order type

EMSX_BROKER

Bloomberg EMSX broker name

EMSX_TIF

Bloomberg EMSX time in force

EMSX_HAND_INSTRUCTION

Bloomberg EMSX hand instruction

createOrder

Field Description
EMSX_SIDE Bloomberg EMSX buy or sell specification

Example: order .EMSX_TICKER = "XYZ";
order . EMSX_AMOUNT = int32(100);
order.EMSX_ORDER_TYPE = "MKT";

order .EMSX_BROKER = "BB";
order.EMSX_TIF = "DAY";
order.EMSX_HAND INSTRUCTION = "ANY";
order.EMSX_SIDE = "BUY";

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.

Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.

Example: options.useDefaul tEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments

events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

5-13

5 Functions — Alphabetical List
P

5-14

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

More About

Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-25

See Also

timer | close | createOrder | createOrderAndRoute |
createOrderAndRouteWithStrat | delete | deleteOrder | deleteRoute | emsx
| modifyOrder | orders | routeOrder | routes | start | stop

Introduced in R2013a

createOrderAndRoute

createOrderAndRoute

Create and route Bloomberg EMSX order

Syntax

events = createOrderAndRoute(c,order)
events createOrderAndRoute(c,order, "timeOut”,timeout)

createOrderAndRoute(, "useDefaultEventHandler" ,false)

= createOrderAndRoute(c,order,options)

Description

events = createOrderAndRoute(c,order) creates and routes a Bloomberg
EMSX order using Bloomberg EMSX connection ¢ and order request order.
createOrderAndRoute returns the order sequence number, route number, and status
message using the default event handler.

events = createOrderAndRoute(c,order, "timeOut” ,timeout) specifies a
timeout value timeout for the execution of the default event handler.

createOrderAndRoute(___ , "useDefaultEventHandler®,false) creates and
routes a Bloomberg EMSX order using any of the input arguments in the previous
syntaxes and a custom event handler. Write a custom event handler to process

the events associated with creating and routing orders. This syntax does not have
an output argument because the custom event handler processes the contents of

the event queue. If you want to use the default event handler instead, set the flag
"useDefaultEventHandler" to true and use the events output argument. By
default, the flag "useDefaultEventHandler" is set to true.

= createOrderAndRoute(c,order,options) uses the options
structure to customize the output, which is useful to preconfigure and save your
options for repeated use. The available options structure fields are timeOut
and useDefaul tEventHandler. Use the events output argument when
useDefaul tEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

5-15

5 Functions — Alphabetical List
P

5-16

Examples

Create and Route an Order Using the Default Event Handler

To create and route a Bloomberg EMSX order, create the connection ¢ using emsx and
set up the order and route subscription using orders and routes. For an example
showing these activities, see “Manage a Bloomberg EMSX Order and Route” on page
4-21.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order .EMSX_TICKER "1BM*;

order .EMSX_AMOUNT int32(100);
order .EMSX_ORDER_TYPE = "MKT";
order_EMSX_BROKER = "BB~";

order .EMSX_TIF = "DAY";

order .EMSX_HAND_INSTRUCTION = "ANY";
order _EMSX_SIDE = "BUY";

Create and route the order using the Bloomberg EMSX connection ¢ and order.
events = createOrderAndRoute(c,order)

events =

EMSX_SEQUENCE: 335877
EMSX_ROUTE_ID: 1
MESSAGE: "Order created and routed”

The default event handler processes the events associated with creating and routing the
order. createOrderAndRoute returns events as a structure that contains these fields:
* Bloomberg EMSX order number

* Bloomberg EMSX route identifier

* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list

objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

createOrderAndRoute

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)
Create and Route an Order Using a Timeout

To create and route a Bloomberg EMSX order, create the connection ¢ using emsx and
set up the order and route subscription using orders and routes. For an example
showing these activities, see “Manage a Bloomberg EMSX Order and Route” on page
4-21.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using INt32.

order .EMSX_TICKER = "IBM";

order .EMSX_AMOUNT = int32(100);
order .EMSX_ORDER_TYPE = "MKT";
order_EMSX_BROKER = "BB~";

order .EMSX_TIF = "DAY";

order .EMSX_HAND_INSTRUCTION = "ANY";
order_.EMSX_SIDE = "BUY";

Create and route the order using the Bloomberg EMSX connection ¢ and order. Set the
timeout value to 200 milliseconds.

events = createOrderAndRoute(c,order, "timeOut”,200)
events =
EMSX_ SEQUENCE: 335877

EMSX_ROUTE_ID: 1
MESSAGE: "Order created and routed”

The default event handler processes the events associated with creating and routing the
order. createOrderAndRoute returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier

5-17

5 Functions — Alphabetical List
P

5-18

* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)
Create and Route an Order Using a Custom Event Handler

To create and route a Bloomberg EMSX order, create the Bloomberg EMSX connection ¢
using emsx and set up the order and route subscription using orders and routes. For
an example showing these activities, see “Manage a Bloomberg EMSX Order and Route”
on page 4-21.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order .EMSX_TICKER "IBM*";

order .EMSX_AMOUNT int32(100);
order .EMSX_ORDER_TYPE = “MKT";

order .EMSX_BROKER = "BB";

order .EMSX_TIF = "DAY";

order .EMSX_HAND_INSTRUCTION = "ANY~";
order .EMSX_SIDE = "BUY";

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-25.

t = timer("TimerFcn”®,{@c-eventhandler}, "Period”,1, ...
"ExecutionMode”, "fixedRate")
start(t)

t is the MATLAB timer object. For details, see timer.

createOrderAndRoute

Create and route the order using the Bloomberg EMSX connection ¢ and order. Set
the flag "useDefaultEventHandler" to false so that eventhandler processes the
events associated with creating and routing an order.

createOrderAndRoute(c,order, "useDefaul tEventHandler® ,false)

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs. Stop the timer to stop data updates using stop.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)
stop(t)

If you are done processing data updates, delete the timer using delete.

delete(t)

Close the Bloomberg EMSX connection.

close(c)
Create and Route an Order Using an Options Structure

To create and route a Bloomberg EMSX order, create the connection ¢ using emsx and
set up the order and route subscription using orders and routes. For an example
showing these activities, see “Manage a Bloomberg EMSX Order and Route” on page
4-21.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order .EMSX_TICKER "1BM*;

order .EMSX_AMOUNT int32(100);
order .EMSX_ORDER_TYPE = "MKT";
order_.EMSX_BROKER = "BB~";

order _.EMSX_TIF = "DAY";

order .EMSX_HAND_INSTRUCTION = "ANY";
order.EMSX_SIDE = "BUY";

Create a structure options. To use the default event handler, set the field
useDefaul tEventHandler to true. Set the field timeOut to 200 milliseconds. Create

5-19

5 Functions — Alphabetical List
P

and route the order using the Bloomberg EMSX connection ¢, order, and options
structure options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = createOrderAndRoute(c,order,options)

events =

EMSX_ SEQUENCE: 728924
EMSX_ROUTE_ID: 1
MESSAGE: "Order created and routed”

The default event handler processes the events associated with creating and routing the
order. createOrderAndRoute returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.
close(c)

. “Create an Order Using Bloomberg EMSX” on page 1-14

. “Create and Manage a Bloomberg EMSX Order” on page 4-12
. “Create and Manage a Bloomberg EMSX Route” on page 4-16
. “Manage a Bloomberg EMSX Order and Route” on page 4-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

5-20

createOrderAndRoute

Bloomberg EMSX service connection, specified as a connection object created using emsx.

order — Order request
structure

Order request, specified as a structure using Bloomberg EMSX field properties. Use
getAlIFieldMetaData to view all available field property options for order. Convert
the number of shares to a 32-bit signed integer using Int32. order contains these fields.

Field Description

EMSX_TICKER Bloomberg EMSX ticker symbol
EMSX_AMOUNT Bloomberg EMSX amount of shares
EMSX_ORDER_TYPE Bloomberg EMSX order type
EMSX_BROKER Bloomberg EMSX broker name
EMSX_TIF Bloomberg EMSX time in force
EMSX_HAND_INSTRUCTION Bloomberg EMSX hand instruction
EMSX_SIDE Bloomberg EMSX buy or sell specification

Example: order .EMSX_TICKER = "XYZ";
order.EMSX_AMOUNT = int32(100);
order _EMSX_ORDER_TYPE = "MKT";
order.EMSX BROKER = "BB";
order.EMSX_TIF = "DAY";

order .EMSX_HAND INSTRUCTION = "ANY";
order.EMSX_SIDE = "BUY";

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.

Data Types: double

options — Options for custom event handler or timeout value
structure

5-21

5 Functions — Alphabetical List
P

5-22

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.

Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments

events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

More About

Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-25

See Also

timer | close | createOrder | createOrderAndRouteWithStrat | delete |
deleteOrder | deleteRoute | emsx | modifyOrder | orders | routeOrder |
routes | start | stop

Introduced in R2013a

createOrderAndRouteWithStrat

createOrderAndRouteWithStrat

Create and route Bloomberg EMSX order with strategies

Syntax

events = createOrderAndRouteWithStrat(c,order,strat)
events = createOrderAndRouteWithStrat(c,order,strat, "timeOut”,
timeout)

createOrderAndRouteWithStrat(, "useDefaultEventHandler® ,false)

= createOrderAndRouteWithStrat(c,order,strat,options)

Description

events = createOrderAndRouteWithStrat(c,order,strat) creates and routes
a Bloomberg EMSX order with strategies using Bloomberg EMSX connection c, order
request order, and order strategy strat. createOrderAndRouteWithStrat returns

the order sequence number, route number, and status message using the default event
handler.

events = createOrderAndRouteWithStrat(c,order,strat, "timeOut”,
timeout) specifies a timeout value timeout for the execution of the default event
handler.

createOrderAndRouteWithStrat(___ , "useDefaultEventHandler™ ,false)
creates and routes a Bloomberg EMSX order with strategies using any of the input
arguments in the previous syntaxes and a custom event handler. Write a custom event
handler to process the events associated with creating and routing orders. This syntax
does not have an output argument because the custom event handler processes the
contents of the event queue. If you want to use the default event handler instead, set the
flag "useDefaultEventHandler"® to true and use the events output argument. By
default, the flag "useDefaul tEventHandler"® is set to true

= createOrderAndRouteWithStrat(c,order,strat,options) uses
the options structure to customize the output, which is useful to preconfigure
and save your options for repeated use. The available options structure fields are

5-23

5 Functions — Alphabetical List
P

timeOut and useDefaul tEventHandler. Use the events output argument when
useDefaul tEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

Examples

Create and Route an Order Using the Default Event Handler

To create and route a Bloomberg EMSX order with strategies, create the connection ¢
using emsx and set up the order and route subscription using orders and routes. For
an example showing these activities, see “Manage a Bloomberg EMSX Order and Route”
on page 4-21.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using Int32.

order .EMSX_TICKER "IBM*";

order .EMSX_AMOUNT int32(100);
order .EMSX_ORDER_TYPE = “MKT";
order .EMSX_BROKER = "BB";

order .EMSX_TIF = "DAY";

order .EMSX_HAND_INSTRUCTION = “ANY~";
order .EMSX_SIDE = "BUY";

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using Int32.

strat.EMSX_STRATEGY_NAME = "SSP*;
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 01);
strat.EMSX_STRATEGY_FIELDS = {"09:30:00%,"14:30:00",50};

Create and route the order with strategies using the Bloomberg EMSX connection c,
order, and strat.

events = createOrderAndRouteWithStrat(c,order,strat)

events =

EMSX_SEQUENCE: 335877
EMSX_ROUTE_ID: 1
MESSAGE: "Order created and routed”

5-24

createOrderAndRouteWithStrat

The default event handler processes the events associated with creating and routing the
order. createOrderAndRouteWithStrat returns events as a structure that contains
these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)
Create and Route an Order Using a Timeout

To create and route a Bloomberg EMSX order with strategies, create the connection ¢
using emsx and set up the order and route subscription using orders and routes. For
an example showing these activities, see “Manage a Bloomberg EMSX Order and Route”
on page 4-21.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order .EMSX_TICKER = "IBM";

order .EMSX_AMOUNT = int32(100);
order .EMSX_ORDER_TYPE = "MKT";
order_.EMSX_BROKER = "BB~";

order .EMSX_TIF = "DAY";
order.EMSX_HAND_INSTRUCTION = “ANY";
order.EMSX_SIDE = "BUY";

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat_EMSX_STRATEGY_NAME = "SSP*";

5-25

5 Functions — Alphabetical List
P

5-26

strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 0]);
strat.EMSX_STRATEGY FIELDS = {"09:30:00","14:30:00",50};

Create and route the order with strategies using the Bloomberg EMSX connection cC,
order, and strat. Set the timeout value to 200 milliseconds.

events = createOrderAndRouteWithStrat(c,order,strat, "timeOut”,200)

events =

EMSX_SEQUENCE: 335877
EMSX_ROUTE _ID: 1
MESSAGE: "Order created and routed”

The default event handler processes the events associated with creating and routing the
order. createOrderAndRouteWithStrat returns events as a structure that contains
these fields:

+ Bloomberg EMSX order number

+ Bloomberg EMSX route identifier

* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list

objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)
Create and Route an Order Using a Custom Event Handler

To create and route a Bloomberg EMSX order with strategies, create the Bloomberg
EMSX connection € using emsx and set up the order and route subscription using
orders and routes. For an example showing these activities, see “Manage a Bloomberg
EMSX Order and Route” on page 4-21.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

createOrderAndRouteWithStrat

order .EMSX_TICKER = "IBM";

order _.EMSX_AMOUNT = int32(100);
order .EMSX_ORDER_TYPE = "MKT";
order_.EMSX_BROKER = "BB";

order _.EMSX_TIF = "DAY";
order.EMSX_HAND_INSTRUCTION = “ANY";
order.EMSX_SIDE = "BUY";

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using Int32.

strat.EMSX_STRATEGY_NAME = “SSP-";
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 0 O]);
strat.EMSX_STRATEGY_FIELDS = {"09:30:00","14:30:00",50}%};

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-25.

t = timer("TimerFcn”®,{@c.eventhandler}, "Period”,1, ...
"ExecutionMode”, "fixedRate")
start(t)

t is the MATLAB timer object. For details, see timer.

Create and route the order with strategies using the Bloomberg EMSX connection
c, order, and strat. Set the flag "useDefaul tEventHandler™ to false so that
eventhandler processes the events associated with creating and routing an order.

createOrderAndRouteWithStrat(c,order,strat, . ..
"useDefaultEventHandler* ,false)

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs. Stop the timer to stop data updates using stop.

c.Session.unsubscribe(osubs)

c.Session.unsubscribe(rsubs)

stop(t)

If you are done processing data updates, delete the timer using delete.

delete(t)

5-27

5 Functions — Alphabetical List
P

Close the Bloomberg EMSX connection.
close(c)
Create and Route an Order Using an Options Structure

To create and route a Bloomberg EMSX order with strategies, create the connection c
using emsx and set up the order and route subscription using orders and routes. For
an example showing these activities, see “Manage a Bloomberg EMSX Order and Route
on page 4-21.

99

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order .EMSX_TICKER = "IBM";

order .EMSX_AMOUNT = int32(100);
order _.EMSX_ORDER_TYPE = "MKT";

order _.EMSX_BROKER = "BB";

order .EMSX_TIF = "DAY";

order .EMSX_HAND_INSTRUCTION = "ANY";
order .EMSX_SIDE = "BUY";

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat.EMSX_STRATEGY NAME = "SSP";
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 0]);
strat.EMSX_STRATEGY FIELDS = {"09:30:00","14:30:00",50};

Create a structure options. To use the default event handler, set the field

useDefaul tEventHandler to true. Set the field timeOut to 200 milliseconds. Create
and route the order using the Bloomberg EMSX connection ¢, order, strat, and options
structure options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = createOrderAndRouteWithStrat(c,order,strat,options)

events

EMSX_SEQUENCE: 728924
EMSX_ROUTE_ID: 1

5-28

createOrderAndRouteWithStrat

MESSAGE: "Order created and routed”

The default event handler processes the events associated with creating and routing the
order. createOrderAndRouteWithStrat returns events as a structure that contains
these fields:

* Bloomberg EMSX order number
+ Bloomberg EMSX route identifier
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 4-12
. “Create and Manage a Bloomberg EMSX Route” on page 4-16
. “Manage a Bloomberg EMSX Order and Route” on page 4-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

order — Order request
structure

Order request, specified as a structure using Bloomberg EMSX field properties. Use
getAl IFieldMetaData to view all available field property options for order. Convert
the number of shares to a 32-bit signed integer using int32. order contains these fields.

Field Description
EMSX_TICKER Bloomberg EMSX ticker symbol

5-29

5 Functions — Alphabetical List
P

5-30

Field Description

EMSX_AMOUNT Bloomberg EMSX amount of shares
EMSX_ORDER_TYPE Bloomberg EMSX order type
EMSX_BROKER Bloomberg EMSX broker name
EMSX_TIF Bloomberg EMSX time in force
EMSX_HAND _INSTRUCTION Bloomberg EMSX hand instruction
EMSX_SIDE Bloomberg EMSX buy or sell specification

Example: order .EMSX_TICKER = "XYZ*;
order .EMSX_AMOUNT = 1nt32(100);
order .EMSX_ORDER_TYPE = “MKT";
order.EMSX_BROKER = "BB";

order .EMSX_TIF = "DAY";

order .EMSX_HAND_INSTRUCTION = “ANY~";
order.EMSX_SIDE = "BUY";

Data Types: struct

strat — Order strategies
structure

Order strategies, specified as a structure that contains the fields:
EMSX_STRATEGY_NAME, EMSX_STRATEGY_FIELD_INDICATORS, and
EMSX_STRATEGY_FIELDS. The structure field values must align with the strategy fields
specified by EMSX_STRATEGY_NAME. For details about strategy fields and ordering, see
getBrokerinfo.

Convert EMSX_STRATEGY_FIELD_INDICATORS to a 32-bit signed integer using int32.

Set EMSX_STRATEGY_FIELD_INDICATORS equal to O for each field to use the field data
setting in EMSX_FI1ELD_DATA. Or, set EMSX_STRATEGY_FIELD_INDICATORS equal to 1
to ignore the data in EMSX_FI1ELD_DATA.

Example: strat_.EMSX_STRATEGY_NAME = "SSP";
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 0 0]):
strat_EMSX_STRATEGY_FIELDS = {"09:30:00","14:30:00",50};

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

createOrderAndRouteWithStrat

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.

Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.

Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments

events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

More About
Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.
. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-25

5-31

5 Functions — Alphabetical List
P

See Also

timer | close | createOrder | delete | deleteOrder | deleteRoute | emsx |
getBrokerInfo | modifyOrder | orders | routeOrder | routes | start | stop

Introduced in R2013a

5-32

deleteOrder

deleteOrder

Delete Bloomberg EMSX order

Syntax

events = deleteOrder(c,ordernum)
events deleteOrder(c,ordernum, "timeOut”, timeout)

deleteOrder(, "useDefaultEventHandler® ,false)

= deleteOrder(c,ordernum,options)

Description

events = deleteOrder(c,ordernum) deletes a Bloomberg EMSX order using the
Bloomberg EMSX connection ¢ and order number or structure ordernum. deleteOrder
returns a status message using the default event handler.

events = deleteOrder(c,ordernum, "timeOut” ,timeout) specifies a timeout
value timeout for the execution of the default event handler.

deleteOrder(___ ,"useDefaultEventHandler" ,false) deletes a Bloomberg
EMSX order using any of the input arguments in the previous syntaxes and a custom
event handler. Write a custom event handler to process the events associated with
deleting orders. This syntax does not have an output argument because the custom event
handler processes the contents of the event queue. If you want to use the default event
handler instead, set the flag "useDefaultEventHandler"” to true and use the events
output argument. By default, the flag "useDefaul tEventHandler” is set to true.

___ = deleteOrder(c,ordernum,options) uses the options structure
to customize the output, which is useful to preconfigure and save your options
for repeated use. The available options structure fields are timeOut

and useDefaultEventHandler. Use the events output argument when
useDefaul tEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

5-33

5 Functions — Alphabetical List
P

5-34

Examples

Delete an Order Using the Default Event Handler

To delete a Bloomberg EMSX order, create the connection C using emsx, set up the order
subscription using orders, and create an order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page
4-12.

Define the structure ordernum that contains the order sequence number
EMSX_SEQUENCE for the order to delete.

ordernum.EMSX_SEQUENCE = 335877;
Delete the order using the Bloomberg EMSX connection ¢ and ordernum.
events = deleteOrder(c,ordernum)

events =

STATUS: *0°F
MESSAGE: "Order deleted”

The default event handler processes the events associated with deleting the order.
deleteOrder returns events as a structure that contains these fields:

* Bloomberg EMSX status
* Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes orders creates subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.
close(c)

Delete an Order Using the Order Number Integer

To delete a Bloomberg EMSX order, create the connection € using emsx, set up the order
subscription using orders, and create an order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page
4-12.

deleteOrder

Delete the order using the Bloomberg EMSX connection ¢ and the order sequence
number 335877 for the order to delete.

events = deleteOrder(c,335877)

events =

STATUS: "0O°
MESSAGE: "Order deleted”

The default event handler processes the events associated with deleting the order.
deleteOrder returns events as a structure that contains these fields:

* Bloomberg EMSX status
* Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes orders creates subs.

c.Session.unsubscribe(subs)
Close the Bloomberg EMSX connection.

close(c)
Delete an Order Using a Timeout

To delete a Bloomberg EMSX order, create the connection C using emsx, set up the order
subscription using orders, and create an order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page
4-12.

Define the structure ordernum that contains the order sequence number
EMSX_SEQUENCE for the order to delete.

ordernum.EMSX_SEQUENCE = 335877;

Delete the order using the Bloomberg EMSX connection ¢ and ordernum. Set the
timeout value to 200 milliseconds.

events = deleteOrder(c,ordernum, "timeOut”,200)

events

5-35

5 Functions — Alphabetical List
P

5-36

STATUS: "O*
MESSAGE: "Order deleted”

The default event handler processes the events associated with deleting the order.
deleteOrder returns events as a structure that contains these fields:

* Bloomberg EMSX status
* Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes orders creates subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

close(c)
Delete an Order Using a Custom Event Handler

To delete a Bloomberg EMSX order, create the Bloomberg EMSX connection c
using emsX, set up the order subscription using orders, and create an order using
createOrder. For an example showing these activities, see “Create and Manage a
Bloomberg EMSX Order” on page 4-12.

Define the structure ordernum that contains the order sequence number
EMSX_SEQUENCE for the order to delete.

ordernum.EMSX_SEQUENCE = 335877;

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-25.

t = timer("TimerFcn®,{@c.-eventhandler}, "Period”,1, ...
"ExecutionMode”, "fixedRate")
start(t)

t is the MATLAB timer object. For details, see timer.

Delete the order using the Bloomberg EMSX connection ¢ and ordernum. Set the flag
"useDefaultEventHandler" to False so that eventhandler processes the events
associated with deleting an order.

deleteOrder

deleteOrder(c,ordernum, "useDefaultEventHandler™, false)

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes orders creates subs. Stop the timer to stop data updates using stop.

c.Session.unsubscribe(subs)
stop(t)

If you are done processing data updates, delete the timer using delete.
delete(t)

Close the Bloomberg EMSX connection.

close(c)

Delete an Order Using an Options Structure

To delete a Bloomberg EMSX order, create the connection C using emsx, set up the order
subscription using orders, and create an order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page
4-12.

Define the structure ordernum that contains the order sequence number
EMSX_SEQUENCE for the order to delete.

ordernum.EMSX_SEQUENCE = 335877;

Create a structure options. To use the default event handler, set the field

useDefaul tEventHandler to true. Set the field timeOut to 200 milliseconds. Delete
the order using the Bloomberg EMSX connection ¢, ordernum, and options structure
options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = deleteOrder(c,ordernum,options)

events =

STATUS: "OF
MESSAGE: "Order deleted”

The default event handler processes the events associated with deleting the order.
deleteOrder returns events as a structure that contains these fields:

5-37

5 Functions — Alphabetical List
P

* Bloomberg EMSX status
* Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes orders creates subs.

c.Session.unsubscribe(subs)
Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 4-12
. “Create and Manage a Bloomberg EMSX Route” on page 4-16
. “Manage a Bloomberg EMSX Order and Route” on page 4-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

ordernum — Order numbers to delete
structure | integer

Order numbers to delete, specified as a structure or an integer to denote one or more

order sequence numbers.

Data Types: struct | Int32

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.

Data Types: double

options — Options for custom event handler or timeout value
structure

5-38

deleteOrder

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.

Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments

events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

More About
Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.
. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-25

See Also

timer | close | createOrder | createOrderAndRoute | delete | deleteRoute |
emsx | modifyOrder | orders | routeOrder | routes | start | stop

Introduced in R2013a

5-39

5 Functions — Alphabetical List
P

5-40

deleteRoute

Delete Bloomberg EMSX active shares

Syntax

events = deleteRoute(c, routenum)
events = deleteRoute(c,routenum, "timeOut”,timeout)

deleteRoute(, "useDefaultEventHandler” ,false)

= deleteRoute(c, routenum,options)

Description

events = deleteRoute(c, routenum) deletes the active shares that are routed
but not filled using the Bloomberg EMSX connection ¢ and route number routenum.
deleteRoute returns a status message using the default event handler.

events = deleteRoute(c, routenum, "timeOut” ,timeout) specifies a timeout
value timeout for the execution of the default event handler.

deleteRoute(___ , "useDefaultEventHandler™ ,false) deletes the active
shares that are routed but not filled using any of the input arguments in the previous
syntaxes and a custom event handler. Write a custom event handler to process

the events associated with deleting the active shares. This syntax does not have

an output argument because the custom event handler processes the contents of

the event queue. If you want to use the default event handler instead, set the flag
"useDefaultEventHandler" to true and use the events output argument. By
default, the flag "useDefaultEventHandler” is set to true.

__ = deleteRoute(c, routenum,options) uses the options structure
to customize the output, which is useful to preconfigure and save your options
for repeated use. The available options structure fields are timeOut

and useDefaul tEventHandler. Use the events output argument when
useDefaul tEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

deleteRoute

Examples

Delete Active Shares
To delete the active shares that are routed but not filled for a Bloomberg EMSX order:

1 Create the connection € using emsx.
2 Set up an order and route subscription using orders and routes.
3 Create and route an order using createOrderAndRoute.

For an example showing these activities, see “Create and Manage a Bloomberg EMSX
Route” on page 4-16.

Define the structure routenum that contains the order sequence number
EMSX_SEQUENCE for the routed order and route number EMSX_ROUTE_ID.

routenum.EMSX SEQUENCE
routenum.EMSX ROUTE_ID

335877;
1;

Delete the active shares that are routed but not filled using the Bloomberg EMSX
connection ¢ and routenum.
events = deleteRoute(c, routenum)

events =

STATUS: "1°
MESSAGE: "Route cancellation request sent to broker*®

The default event handler processes the events associated with deleting the active
shares. deleteRoute returns events as a structure that contains these fields:

* Bloomberg EMSX status
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

5-41

5 Functions — Alphabetical List
P

5-42

close(c)
Delete Active Shares Using a Timeout
To delete the active shares that are routed but not filled for a Bloomberg EMSX order:

1 Create the connection C using emsx.
2 Set up an order and route subscription using orders and routes.
3 Create and route an order using createOrderAndRoute.

For an example showing these activities, see “Create and Manage a Bloomberg EMSX
Route” on page 4-16.

Define the structure routenum that contains the order sequence number
EMSX_SEQUENCE for the routed order and route number EMSX_ROUTE__ID.

routenum.EMSX_ SEQUENCE
routenum.EMSX_ROUTE_ 1D

335877;
1;

Delete the active shares that are routed but not filled using the Bloomberg EMSX
connection ¢ and routenum. Set the timeout value to 200 milliseconds.

options.useDefaul tEventHandler = true;
options.timeOut = 200;

events = deleteRoute(c,routenum, "timeOut”,200)

events =

STATUS: "1°
MESSAGE: "Route cancellation request sent to broker*®

The default event handler processes the events associated with deleting the active
shares. deleteRoute returns events as a structure that contains these fields:

* Bloomberg EMSX status
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)

deleteRoute

c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

Delete Active Shares Using a Custom Event Handler

To delete the active shares that are routed but not filled for a Bloomberg EMSX order:

1 Create the Bloomberg EMSX connection € using emsx.
2 Set up an order and route subscription using orders and routes.
3 Create and route an order using createOrderAndRoute.

For an example showing these activities, see “Create and Manage a Bloomberg EMSX
Route” on page 4-16.

Define the structure routenum that contains the order sequence number
EMSX_SEQUENCE for the routed order and route number EMSX_ROUTE_ID.

routenum.EMSX_SEQUENCE
routenum.EMSX_ROUTE_ID

335877;
1;

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-25.

t = timer("TimerFcn®,{@c.eventhandler}, "Period”,1, ...
"ExecutionMode”, "fixedRate")
start(t)

t is the MATLAB timer object. For details, see timer.

Delete the active shares that are routed but not filled using the Bloomberg EMSX
connection ¢ and routenum. Set the flag "useDefaultEventHandler" to false so
that eventhandler processes the events associated with deleting the active shares.

deleteRoute(c, routenum, "useDefaultEventHandler™, false)

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs. Stop the timer to stop data updates using stop.

5-43

5 Functions — Alphabetical List
P

5-44

c.Session.unsubscribe(osubs)

c.Session.unsubscribe(rsubs)

stop(t)

If you are done processing data updates, delete the timer using delete.

delete(t)

Close the Bloomberg EMSX connection.

close(c)

Delete Active Shares Using an Options Structure

To delete the active shares that are routed but not filled for a Bloomberg EMSX order:

1 Create the connection € using emsx.
2 Set up an order and route subscription using orders and routes.
3 Create and route an order using createOrderAndRoute.

For an example showing these activities, see “Create and Manage a Bloomberg EMSX
Route” on page 4-16.

Define the structure routenum that contains the order sequence number
EMSX_SEQUENCE for the routed order and route number EMSX_ROUTE__ID.

routenum.EMSX_SEQUENCE
routenum.EMSX_ROUTE_ID

= 335877;

=1;

Create a structure options. To use the default event handler, set the field

useDefaul tEventHandler to true. Set the field timeOut to 200 milliseconds. Delete
the active shares that are routed but not filled using the Bloomberg EMSX connection c,
routenum, and options structure options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = deleteRoute(c, routenum,options)

events

STATUS: "1°
MESSAGE: "Route cancellation request sent to broker"®

deleteRoute

The default event handler processes the events associated with deleting the active
shares. deleteRoute returns events as a structure that contains these fields:

* Bloomberg EMSX status
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 4-12
. “Create and Manage a Bloomberg EMSX Route” on page 4-16
. “Manage a Bloomberg EMSX Order and Route” on page 4-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

routenum — Route to delete
structure

Route to delete, specified as a structure containing fields EMSX_SEQUENCE and
EMSX_ROUTE_ID.

Example: routenum.EMSX SEQUENCE = 728918;
routenum.EMSX ROUTE_ID = 1;

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

5-45

5 Functions — Alphabetical List
P

5-46

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.

Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.

Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments

events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

More About

Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-25

deleteRoute

See Also

timer | close | createOrder | createOrderAndRoute | delete | deleteOrder |

emsx | modifyOrder | modifyRoute | orders | routeOrder | routes | start |
stop

Introduced in R2013a

5-47

5 Functions — Alphabetical List
P

getAllFieldMetaData

Obtain Bloomberg EMSX field information

Syntax

r = getAllFieldMetaData(c)

Description

r = getAllFieldMetaData(c) returns the Bloomberg EMSX field information using
the Bloomberg EMSX connection c.

Examples

Request All Field Information

Create a connection c to the Bloomberg EMSX.
c = emsx("//blp/emapisvc_beta®);

Request all fields supported by Bloomberg EMSX service using the Bloomberg EMSX
connection C.

r = getAllFieldMetaData(c)
r =

EMSX_FIELD_NAME: {113x1 cell}

EMSX_DISP_NAME: {113x1 cell}

EMSX_TYPE: {113x1 cell}
EMSX_LEVEL: [113x1 double]
EMSX_LEN: [113x1 double]

Display all field information for the first Bloomberg EMSX field using a cell array. Create
a cell array from the fields in the returned data structure r.

{r.EMSX_FIELD_NAME{1} r.EMSX_DISP_NAME{1} r.EMSX_TYPE{1} r.EMSX_LEVEL(1) r.EMSX_LEN(1)}

5-48

getAllFieldMetaData

"MSG_TYPE*® "Msg Type*© "String” [O] [1]
Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 4-12
. “Create and Manage a Bloomberg EMSX Route” on page 4-16
. “Manage a Bloomberg EMSX Order and Route” on page 4-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

Output Arguments

r — Return information for all fields
structure

Return information for all fields, returned as a structure for all fields supported by
Bloomberg EMSX.

More About
Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

. “Workflow for Bloomberg EMSX” on page 2-2

See Also

close | createOrder | createOrderAndRoute |
createOrderAndRouteWithStrat | emsx

5-49

5 Functions — Alphabetical List
P

Introduced in R2013a

5-50

getBrokerlnfo

getBrokerinfo

Obtain Bloomberg EMSX broker and strategy information

Syntax

r = getBrokerlInfo(c,brokerstrat)

Description

r = getBrokerInfo(c,brokerstrat) obtains Bloomberg EMSX broker and strategy
information using the Bloomberg EMSX connection ¢ and broker and strategy request
structure brokerstrat.

Examples

Obtain Broker Information
Create a connection c to the Bloomberg EMSX.
c = emsx("//blp/emapisvc_beta®);

Define the broker and strategy information structure brokerstrat. Obtain broker
information using the Bloomberg EMSX connection ¢ and structure brokerstrat.

brokerstrat.EMSX TICKER = “ABCD US Equity"~;
r = getBrokeriInfo(c,brokerstrat)
r =

EMSX_BROKERS: {2x1 cell}

The EMSX_BROKERS field lists the Bloomberg EMSX brokers.

Close the Bloomberg EMSX connection.

5-51

5 Functions — Alphabetical List
P

close(c)

Obtain Strategy Information

Create a connection c to the Bloomberg EMSX.
c = emsx("//blp/emapisvc_beta®);

Define the broker and strategy information structure brokerstrat. Obtain strategy
information using the Bloomberg EMSX connection ¢ and structure brokerstrat.

brokerstrat.EMSX_TICKER
brokerstrat.EMSX_BROKER

*ABCD US Equity";
"BMTB";

r = getBrokerInfo(c,brokerstrat)

r =

EMSX_STRATEGIES: {16x1 cell}

The EMSX_STRATEGIES field lists the Bloomberg EMSX strategies.
Close the Bloomberg EMSX connection.
close(c)
Obtain Field Information
Create a connection c to the Bloomberg EMSX.

c = emsx("//blp/emapisvc_beta®);

Define the broker and strategy information structure brokerstrat. Obtain field
information using the Bloomberg EMSX connection ¢ and structure brokerstrat.

brokerstrat_EMSX_TICKER "ABCD US Equity";
brokerstrat_EMSX_BROKER "BMTB" ;
brokerstrat_EMSX_STRATEGY = "SSP-";

r = getBrokerInfo(c,brokerstrat)

r =

FieldName: {3x1 cell}

5-52

getBrokerlnfo

Disable: {3x1 cell}
StringValue: {3x1 cell}

The structure field FieldName lists the Bloomberg EMSX fields. The structure fields
Disable and StringValue contain information about the Bloomberg EMSX fields.

Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 4-12
. “Create and Manage a Bloomberg EMSX Route” on page 4-16
. “Manage a Bloomberg EMSX Order and Route” on page 4-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

brokerstrat — Broker and strategy request
structure

Broker and strategy request, specified as a structure that contains Bloomberg

EMSX fields. Use getAl IFieldMetaData to view all available fields for
brokerStrategyStruct.

Example: brokerstrat.EMSX_TICKER = “"ABCD US Equity”~;

Data Types: struct

Output Arguments

r — Broker and strategy information
structure

Broker and strategy information, returned as a structure.

5-53

5 Functions — Alphabetical List
P

5-54

More About
Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

“Workflow for Bloomberg EMSX” on page 2-2

See Also

close | createOrder | createOrderAndRoute |
createOrderAndRouteWithStrat | deleteOrder | deleteRoute | emsx |
modifyOrder | orders | routeOrder | routes

Introduced in R2013a

modifyOrder

modifyOrder

Modify Bloomberg EMSX order

Syntax

events = modifyOrder(c,modorder)
events = modifyOrder(c,modorder, "timeOut” ,timeout)

modifyOrder(, "useDefaultEventHandler™ ,false)

= modifyOrder(c,modorder,options)

Description

events = modifyOrder(c,modorder) modifies a Bloomberg EMSX order using
the Bloomberg EMSX connection ¢ and modify order request structure modorder.
modifyOrder returns a status message using the default event handler.

events = modifyOrder(c,modorder, "timeOut” ,timeout) specifies a timeout
value timeout for the execution of the default event handler.

modifyOrder(____ ,"useDefaultEventHandler" ,false) modifies a Bloomberg
EMSX order using any of the input arguments in the previous syntaxes and a custom
event handler. Write a custom event handler to process the events associated with
modifying orders. This syntax does not have an output argument because the custom
event handler processes the contents of the event queue. If you want to use the default
event handler instead, set the flag "useDefaultEventHandler"” to true and use the
events output argument. By default, the flag "useDefaultEventHandler” is set to
true.

___ = modifyOrder(c,modorder,options) uses the options structure
to customize the output, which is useful to preconfigure and save your options
for repeated use. The available options structure fields are timeOut and
useDefaul tEventHandler. Use the events output argument when the flag
useDefaul tEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

5-55

5 Functions — Alphabetical List
P

5-56

Examples

Modify an Order Using the Default Event Handler

To modify a Bloomberg EMSX order, create the connection € using emsx, set up the order
subscription using orders, and create an order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page
4-12.

Define the structure modorder that contains the order sequence number
EMSX_SEQUENCE, the security EMSX_TICKER, and the number of shares EMSX_AMOUNT.
This code modifies the order number 728905 for 200 shares of IBM. Convert the
numbers to 32-bit signed integers using int32.

modorder .EMSX_SEQUENCE = int32(728905);

modorder .EMSX_TICKER = "IBM";
modorder .EMSX_AMOUNT = int32(200);

Modify the order using the Bloomberg EMSX connection ¢ and modorder.
events = modifyOrder(c,modorder)

events =

EMSX_SEQUENCE: 728905
MESSAGE: "Order Modified”

The default event handler processes the events associated with modifying the order.
modifyOrder returns events as a structure that contains these fields:

* Bloomberg EMSX order number
+ Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes that orders creates subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

modifyOrder

close(c)
Modify an Order Using a Timeout

To modify a Bloomberg EMSX order, create the connection ¢ using emsx, set up the order
subscription using orders, and create an order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page
4-12.

Define the structure modorder that contains the order sequence number
EMSX_SEQUENCE, the security EMSX_TICKER, and the number of shares EMSX_AMOUNT.
This code modifies the order number 728905 for 200 shares of IBM. Convert the
numbers to 32-bit signed integers using int32.

modorder .EMSX_SEQUENCE = int32(728905);

modorder .EMSX_TICKER "1BM*;
modorder .EMSX_AMOUNT int32(200);

Modify the order using the Bloomberg EMSX connection ¢ and modorder. Set the
timeout value to 200 milliseconds.

events = modifyOrder(c,modorder, "timeOut”,200)

events =

EMSX_SEQUENCE: 728905
MESSAGE: "Order Modified”

The default event handler processes the events associated with modifying the order.
modifyOrder returns events as a structure that contains these fields:

* Bloomberg EMSX order number
+ Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes that orders creates subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

5-57

5 Functions — Alphabetical List
P

5-58

close(c)
Modify an Order Using a Custom Event Handler

To modify a Bloomberg EMSX order, create the Bloomberg EMSX connection c
using emsx, set up the order subscription using orders, and create an order using
createOrder. For an example showing these activities, see “Create and Manage a
Bloomberg EMSX Order” on page 4-12.

Define the structure modorder that contains the order sequence number
EMSX_SEQUENCE, the security EMSX_TICKER, and the number of shares EMSX_AMOUNT.
This code modifies the order number 728905 for 200 shares of IBM. Convert the
numbers to 32-bit signed integers using int32.

modorder .EMSX_SEQUENCE = int32(728905);
modorder .EMSX_TICKER "I1BM";
modorder .EMSX_AMOUNT int32(200);

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-25.

t = timer("TimerFcn®,{@c-eventhandler}, "Period”,1, ...
"ExecutionMode®, "fixedRate")
start(t)

t is the MATLAB timer object. For details, see timer.

Modify the order using the Bloomberg EMSX connection ¢ and modorder. Set the flag
"useDefaultEventHandler"® to false so that eventhandler processes the events
associated with modifying an order.

modifyOrder(c,modorder, "useDefaultEventHandler™, false)

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes that orders creates subs. Stop the timer to stop data updates using
stop.

c.Session.unsubscribe(subs)
stop(t)

If you are done processing data updates, delete the timer using delete.

delete(t)

modifyOrder

Close the Bloomberg EMSX connection.

close(c)
Modify an Order Using an Options Structure

To modify a Bloomberg EMSX order, create the connection Cc using emsx, set up the order
subscription using orders, and create an order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page
4-12.

Define the structure modorder that contains the order sequence number
EMSX_SEQUENCE, the security EMSX_TICKER, and the number of shares EMSX_AMOUNT.
This code modifies the order number 728905 for 200 shares of IBM. Convert the
numbers to 32-bit signed integers using Int32.

modorder .EMSX_SEQUENCE = int32(728905);
modorder .EMSX_TICKER "I1BM";
modorder .EMSX_AMOUNT int32(200);

Create a structure options. To use the default event handler, set the field

useDefaul tEventHandler to true. Set the field timeOut to 200 milliseconds. Modify
the order using the Bloomberg EMSX connection ¢, modorder, and options structure
options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = modifyOrder(c,modorder ,options)

events

EMSX_SEQUENCE: 728905
MESSAGE: "Order Modified”

The default event handler processes the events associated with modifying the order.
modifyOrder returns events as a structure that contains these fields:

+ Bloomberg EMSX order number
* Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes that orders creates subs.

5-59

5 Functions — Alphabetical List
P

c.Session.unsubscribe(subs)
Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 4-12
. “Create and Manage a Bloomberg EMSX Route” on page 4-16
. “Manage a Bloomberg EMSX Order and Route” on page 4-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.
modorder — Modify order request

structure

Modify order request, specified as a structure that contains these fields.

Use getAl IFieldMetaData to view all available fields for modorder. Convert the
numbers to 32-bit signed integers using int32.

Field Description

EMSX_SEQUENCE Bloomberg EMSX order sequence number
EMSX_TICKER Bloomberg EMSX ticker symbol
EMSX_AMOUNT Bloomberg EMSX number of shares

Example: modorder .EMSX _SEQUENCE = int32(728905);
modorder .EMSX_TICKER "XYZ*;
modorder .EMSX_AMOUNT int32(100);

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

5-60

modifyOrder

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.

Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.

Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments

events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

More About
Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.
. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-25

5-61

5 Functions — Alphabetical List
P

See Also

timer | close | createOrder | createOrderAndRoute |
createOrderAndRouteWithStrat | delete | deleteOrder | deleteRoute | emsx
| orders | routeOrder | routes | start | stop

Introduced in R2013a

5-62

modifyRoute

modifyRoute

Modify Bloomberg EMSX route

Syntax

events = modifyRoute(c,modroute)
events = modifyRoute(c,modroute, "timeOut” ,timeout)

modi fyRoute(, "useDefaultEventHandler” ,false)

= modifyRoute(c,modroute,options)

Description

events = modifyRoute(c,modroute) modifies a Bloomberg EMSX route using the
Bloomberg EMSX connection ¢ and route request modroute. modifyRoute returns a
status message using the default event handler.

events = modifyRoute(c,modroute, "timeOut”,timeout) specifies a timeout
value timeout for the execution of the default event handler.

modifyRoute(___ , "useDefaultEventHandler®,false) modifies a Bloomberg
EMSX route using any of the input arguments in the previous syntaxes and a custom
event handler. Write a custom event handler to process the events associated with
modifying routes. This syntax does not have an output argument because the custom
event handler processes the contents of the event queue. If you want to use the default
event handler instead, set the flag "useDefaultEventHandler"” to true and use the
events output argument. By default, the flag "useDefaultEventHandler” is set to
true.

_ = modifyRoute(c,modroute,options) uses the options structure
to customize the output, which is useful to preconfigure and save your options
for repeated use. The available options structure fields are timeOut and
useDefaul tEventHandler. Use the events output argument when the flag
useDefaul tEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

5-63

5 Functions — Alphabetical List
P

5-64

Examples

Modify a Route Using the Default Event Handler
To modify a route for a Bloomberg EMSX order:

+ Create the connection Cc using emsx.
* Set up the order and route subscription using orders and routes.
+ Create and route the order using createOrderAndRoute.

For an example showing these activities, see “Manage a Bloomberg EMSX Order and
Route” on page 4-21.

Define the modroute structure that contains these fields:

+ Bloomberg EMSX order sequence number EMSX_SEQUENCE

* Bloomberg EMSX ticker symbol EMSX_TICKER

* Bloomberg EMSX number of shares EMSX_AMOUNT

* Bloomberg EMSX route identifier EMSX_ROUTE_ 1D

This code instructs Bloomberg EMSX to route 100 shares of IBM for order sequence

number 731128 and route identifier 1. Convert the numbers to 32-bit signed integers
using Int32.

modroute.EMSX_SEQUENCE = int32(731128)

modroute .EMSX_TICKER = " IBM";
modroute .EMSX_AMOUNT = int32(100);
modroute.EMSX_ROUTE_ID = int32(1);

Modify the route using the Bloomberg EMSX connection ¢ and modroute.
events = modifyRoute(c,modroute)

events =

EMSX_SEQUENCE: 0
EMSX_ROUTE_ID: O
MESSAGE: "Route modified"

The default event handler processes the events associated with modifying a route.
modi fyRoute returns events as a structure that contains these fields:

modifyRoute

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.
close(c)

Modify a Route Using a Timeout

To modify a route for a Bloomberg EMSX order:

+ Create the connection Cc using emsx.
* Set up the order and route subscription using orders and routes.
+ Create and route the order using createOrderAndRoute.

For an example showing these activities, see “Manage a Bloomberg EMSX Order and
Route” on page 4-21.

Define the modroute structure that contains these fields:

* Bloomberg EMSX order sequence number EMSX_ SEQUENCE
* Bloomberg EMSX ticker symbol EMSX_TICKER

* Bloomberg EMSX number of shares EMSX_AMOUNT

* Bloomberg EMSX route identifier EMSX_ROUTE_ 1D

This code modifies the route to 100 shares of IBM for order sequence number 731128
and route identifier 1. Convert the numbers to 32-bit signed integers using int32.

modroute.EMSX_SEQUENCE = int32(731128)
modroute .EMSX_TICKER = "IBM";

modroute .EMSX_AMOUNT = int32(100);
modroute .EMSX_ROUTE_ID = int32(1);

5-65

5 Functions — Alphabetical List
P

5-66

Modify the route using the Bloomberg EMSX connection ¢ and modroute. Set the
timeout value to 200 milliseconds.

events = modifyRoute(c,modroute, "timeOut”,200)

events =

EMSX_SEQUENCE: O
EMSX_ROUTE_ID: O
MESSAGE: "Route modified”

The default event handler processes the events associated with modifying a route.
modifyRoute returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.
close(c)

Modify a Route Using a Custom Event Handler

To modify a route for a Bloomberg EMSX order:

+ Create the connection c using emsx.
* Set up the order and route subscription using orders and routes.
* Create and route the order using createOrderAndRoute.

For an example showing these activities, see “Manage a Bloomberg EMSX Order and
Route” on page 4-21.

Define the modroute structure that contains these fields:

* Bloomberg EMSX order sequence number EMSX SEQUENCE

modifyRoute

* Bloomberg EMSX ticker symbol EMSX_TICKER
* Bloomberg EMSX number of shares EMSX_AMOUNT
* Bloomberg EMSX route identifier EMSX_ROUTE_ 1D

This code modifies the route to 100 shares of IBM for order sequence number 731128
and route identifier 1. Convert the numbers to 32-bit signed integers using int32.

modroute.EMSX_SEQUENCE = int32(731128)
modroute .EMSX_TICKER "1BM*;

modroute .EMSX_AMOUNT int32(100);
modroute .EMSX_ROUTE_ID = int32(1);

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-25.

t = timer("TimerFcn”®,{@c.eventhandler}, "Period”,1,...

"ExecutionMode”, "fixedRate")
start(t)

t is the MATLAB timer object. For details, see timer.

Modify the route using the Bloomberg EMSX connection ¢ and modroute. Set the flag
"useDefaultEventHandler"™ to false so that eventhandler processes the events
associated with modifying a route.

modifyRoute(c,modroute, “"useDefaultEventHandler®, false)

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs. Stop the timer to stop data updates using stop.

c.Session.unsubscribe(osubs)

c.Session.unsubscribe(rsubs)

stop(t)

If you are done processing data updates, delete the timer using delete.

delete(t)

Close the Bloomberg EMSX connection.

5-67

5 Functions — Alphabetical List
P

close(c)
Modify a Route Using an Options Structure
To modify a route for a Bloomberg EMSX order:

+ Create the connection c using emsx.
* Set up the order and route subscription using orders and routes.
+ Create and route the order using createOrderAndRoute.

For an example showing these activities, see “Manage a Bloomberg EMSX Order and
Route” on page 4-21.

Define the modroute structure that contains these fields:

* Bloomberg EMSX order sequence number EMSX SEQUENCE
* Bloomberg EMSX ticker symbol EMSX_TICKER

* Bloomberg EMSX number of shares EMSX_AMOUNT

+ Bloomberg EMSX route identifier EMSX_ROUTE_ID

This code modifies the route to 100 shares of IBM for order sequence number 731128
and route identifier 1. Convert the numbers to 32-bit signed integers using int32.

modroute.EMSX_SEQUENCE = int32(731128)

modroute .EMSX_TICKER = "IBM";
modroute.EMSX_AMOUNT = int32(100);
modroute.EMSX_ROUTE_ID = int32(1);

Create a structure options. To use the default event handler, set the field
useDefaultEventHandler to true. Set the field timeOut to 200 milliseconds. Modify
the route using the Bloomberg EMSX connection ¢, modroute, and options structure
options.

options.useDefaul tEventHandler = true;
options.timeOut = 200;

events = modifyRoute(c,modroute,options)
events =
EMSX_SEQUENCE: 0

EMSX_ROUTE_ID: O
MESSAGE: "Route modified"

5-68

modifyRoute

The default event handler processes the events associated with modifying a route.
mod i fyRoute returns events as a structure that contains these fields:

+ Bloomberg EMSX order number
* Bloomberg EMSX route identifier
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 4-12
. “Create and Manage a Bloomberg EMSX Route” on page 4-16
. “Manage a Bloomberg EMSX Order and Route” on page 4-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

modroute — Modify route request
structure

Modify route request, specified as a structure with these fields.

Use getAllFieldMetaData to view all available fields for modroute. Convert the
numbers to 32-bit signed integers using int32.

Field Description
EMSX_SEQUENCE Bloomberg EMSX order sequence number

5-69

5 Functions — Alphabetical List
P

5-70

Field Description

EMSX_TICKER Bloomberg EMSX ticker symbol
EMSX_AMOUNT Bloomberg EMSX number of shares
EMSX_ROUTE_ID Bloomberg EMSX route identifier

Example: modroute .EMSX_SEQUENCE = int32(731128);
modroute.EMSX_TICKER "XYZ*";

modroute .EMSX_ AMOUNT int32(100);
modroute.EMSX ROUTE ID = int32(1);

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.

Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.

Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments

events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

modifyRoute

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

More About
Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.
. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-25

See Also
timer | createOrder | createOrderAndRoute | delete | deleteOrder |
modifyRouteWithStrat | orders | routes | start | stop

Introduced in R2013a

5-71

5 Functions — Alphabetical List
P

modifyRouteWithStrat

Modify route with strategies for Bloomberg EMSX

Syntax

events = modifyRouteWithStrat(c,modroute,strat)
events modifyRouteWithStrat(c,modroute,strat, "timeOut”, timeout)

modi fyRouteWithStrat(, "useDefaultEventHandler" ,false)

= modifyRouteWithStrat(c,modroute,strat,options)

Description

events = modifyRouteWithStrat(c,modroute,strat) modifies a Bloomberg
EMSX route with strategies using the Bloomberg EMSX connection ¢, route request
modroute, and order strategy strat. modifyRouteWithStrat returns the order
sequence number, route identifier, and status message using the default event handler.

events = modifyRouteWithStrat(c,modroute,strat, "timeOut”,timeout)
specifies a timeout value timeout for the execution of the default event handler.

modifyRouteWithStrat(___ , "useDefaultEventHandler" ,false) modifies
a Bloomberg EMSX route with strategies using any of the input arguments in the
previous syntaxes and a custom event handler. Write a custom event handler to
process the events associated with modifying routes. This syntax does not have

an output argument because the custom event handler processes the contents of
the event queue. If you want to use the default event handler instead, set the flag
"useDefaultEventHandler" to true and use the events output argument. By
default, the flag "useDefaultEventHandler” is set to true.

____ = modifyRouteWithStrat(c,modroute,strat,options) uses the
options structure to customize the output, which is useful to preconfigure and save
your options for repeated use. The available options structure fields are timeOut
and useDefaul tEventHandler. Use the events output argument when the flag
useDefaul tEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

5-72

modifyRouteWithStrat

Examples

Modify a Route with Strategies Using the Default Event Handler
To modify a route for a Bloomberg EMSX order with strategies:

+ Create the connection Cc using emsx.
* Set up the order and route subscription using orders and routes.
+ Create and route the order using createOrderAndRoute.

For an example showing these activities, see “Manage a Bloomberg EMSX Order and
Route” on page 4-21.

Define the modroute structure that contains these fields:

* Bloomberg EMSX order sequence number EMSX SEQUENCE
* Bloomberg EMSX ticker symbol EMSX_TICKER

* Bloomberg EMSX number of shares EMSX_AMOUNT

+ Bloomberg EMSX route identifier EMSX_ROUTE_ID

This code modifies the route to 100 shares of IBM for order sequence number 731128
and route identifier 1. Convert the numbers to 32-bit signed integers using int32.

modroute.EMSX_SEQUENCE = int32(731128)

modroute.EMSX_TICKER = "IBM";
modroute .EMSX_AMOUNT = int32(100);
modroute .EMSX_ROUTE_ID = int32(1);

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat.EMSX_STRATEGY _NAME = "SSP";
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 0]);
strat.EMSX_STRATEGY_FIELDS = {"09:30:00","14:30:00",50%};

Modify the route using the Bloomberg EMSX connection ¢, modroute, and strat.
events = modifyRouteWithStrat(c,modroute,strat)

events =

EMSX_SEQUENCE: O
EMSX_ROUTE_ID: O

5-73

5 Functions — Alphabetical List
P

5-74

MESSAGE: "Route modified"

The default event handler processes the events associated with modifying a route.
modifyRouteWithStrat returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

Modify a Route with Strategies Using a Timeout

To modify a route for a Bloomberg EMSX order with strategies:

+ Create the connection c using emsx.
* Set up the order and route subscription using orders and routes.
+ Create and route the order using createOrderAndRoute.

For an example showing these activities, see “Manage a Bloomberg EMSX Order and
Route” on page 4-21.

Define the modroute structure that contains these fields:

* Bloomberg EMSX order sequence number EMSX_ SEQUENCE
* Bloomberg EMSX ticker symbol EMSX_TICKER

* Bloomberg EMSX number of shares EMSX_AMOUNT

* Bloomberg EMSX route identifier EMSX_ROUTE_ 1D

This code modifies the route to 100 shares of IBM for order sequence number 731128
and route identifier 1. Convert the numbers to 32-bit signed integers using int32.

modroute_.EMSX_SEQUENCE = int32(731128)

modifyRouteWithStrat

modroute .EMSX_TICKER "1BM*;
modroute .EMSX_AMOUNT int32(100);
modroute .EMSX_ROUTE_ID = int32(1);

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using Int32.

strat.EMSX_STRATEGY _NAME = "SSP";
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 0]);
strat.EMSX_STRATEGY_FIELDS = {"09:30:00","14:30:00",50%};

Modify the route using the Bloomberg EMSX connection ¢, modroute, and strat. Set
the timeout value to 200 milliseconds.

events = modifyRouteWithStrat(c,modroute,strat, "timeOut”,200)

events =

EMSX_SEQUENCE: 0
EMSX_ROUTE_ID: O
MESSAGE: "Route modified”

The default event handler processes the events associated with modifying a route.
modi fyRouteWithStrat returns events as a structure that contains these fields:

+ Bloomberg EMSX order number
+ Bloomberg EMSX route identifier
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

Modify a Route with Strategies Using a Custom Event Handler

To modify a route for a Bloomberg EMSX order with strategies:

+ Create the connection Cc using emsx.

5-75

5 Functions — Alphabetical List
P

* Set up the order and route subscription using orders and routes.
* Create and route the order using createOrderAndRoute.

For an example showing these activities, see “Manage a Bloomberg EMSX Order and
Route” on page 4-21.

Define the modroute structure that contains these fields:

* Bloomberg EMSX order sequence number EMSX_ SEQUENCE
* Bloomberg EMSX ticker symbol EMSX_TICKER

* Bloomberg EMSX number of shares EMSX_AMOUNT

* Bloomberg EMSX route identifier EMSX_ROUTE_ 1D

This code modifies the route to 100 shares of IBM for order sequence number 731128
and route identifier 1. Convert the numbers to 32-bit signed integers using int32.

modroute.EMSX_SEQUENCE = int32(731128)
modroute .EMSX_TICKER = " IBM";

modroute .EMSX_AMOUNT = int32(100);
modroute.EMSX_ROUTE_ID = int32(1);

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat.EMSX_STRATEGY NAME = "SSP";
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 0]);
strat.EMSX_STRATEGY FIELDS = {"09:30:00","14:30:00",50};

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-25.

t = timer("TimerFcn®,{@c-eventhandler}, "Period”,1, ...
"ExecutionMode®, "fixedRate")
start(t)

t is the MATLAB timer object. For details, see timer.

Modify the route using the Bloomberg EMSX connection ¢, modroute, and strat. Set
the flag "useDefaultEventHandler® to false so that eventhandler processes the
events associated with modifying a route.

5-76

modifyRouteWithStrat

modifyRouteWithStrat(c,modroute,strat, "useDefaul tEventHandler® ,false)

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs. Stop the timer to stop data updates using stop.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)
stop(t)

If you are done processing data updates, delete the timer using delete.
delete(t)

Close the Bloomberg EMSX connection.

close(c)

Modify a Route with Strategies Using an Options Structure

To modify a route for a Bloomberg EMSX order with strategies:

* Create the connection € using emsx.
* Set up the order and route subscription using orders and routes.
* Create and route the order using createOrderAndRoute.

For an example showing these activities, see “Manage a Bloomberg EMSX Order and
Route” on page 4-21.

Define the modroute structure that contains these fields:

+ Bloomberg EMSX order sequence number EMSX_SEQUENCE
* Bloomberg EMSX ticker symbol EMSX_TICKER

* Bloomberg EMSX number of shares EMSX_AMOUNT

+ Bloomberg EMSX route identifier EMSX_ROUTE_ID

This code modifies the route to 100 shares of IBM for order sequence number 731128
and route identifier 1. Convert the numbers to 32-bit signed integers using int32.

modroute_.EMSX_SEQUENCE = int32(731128)

modroute.EMSX_TICKER = "IBM";
modroute.EMSX_AMOUNT = int32(100);
modroute.EMSX_ROUTE_ID = int32(1);

5-77

5 Functions — Alphabetical List
P

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using Int32.

strat.EMSX_STRATEGY_NAME = "SSP*;
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 01);
strat.EMSX_STRATEGY_FIELDS = {"09:30:007,"14:30:00",50};

Create a structure options. To use the default event handler, set the field

useDefaul tEventHandler to true. Set the field timeOut to 200 milliseconds. Modify
the route using the Bloomberg EMSX connection ¢, modroute, strat, and options
structure options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = modifyRouteWithStrat(c,modroute,strat,options)

events

EMSX_SEQUENCE: 0
EMSX_ROUTE_ID: O
MESSAGE: "Route modified”

The default event handler processes the events associated with modifying a route.
modifyRouteWithStrat returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 4-12
. “Create and Manage a Bloomberg EMSX Route” on page 4-16

5-78

modifyRouteWithStrat

. “Manage a Bloomberg EMSX Order and Route” on page 4-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

modroute — Modify route request
structure

Modify route request, specified as a structure with these fields.

Use getAlIFieldMetaData to view all available fields for modroute. Convert the
numbers to 32-bit signed integers using Int32.

Field Description

EMSX_SEQUENCE Bloomberg EMSX order sequence number
EMSX_TICKER Bloomberg EMSX ticker symbol
EMSX_AMOUNT Bloomberg EMSX number of shares
EMSX_ROUTE_ID Bloomberg EMSX route identifier

Example: modroute .EMSX SEQUENCE = int32(731128);
modroute.EMSX TICKER = "XYZ";

modroute.EMSX AMOUNT = int32(100);
modroute.EMSX_ROUTE_ID = int32(1);

Data Types: struct

strat — Order strategies
structure

Order strategies, specified as a structure that contains the fields:
EMSX_STRATEGY_NAME, EMSX_STRATEGY_FIELD_INDICATORS, and
EMSX_STRATEGY_FIELDS. The structure field values must align with the strategy fields
specified by EMSX_STRATEGY_NAME. For details about strategy fields and ordering, see
getBrokerInfo.

5-79

5 Functions — Alphabetical List
P

5-80

Convert EMSX_STRATEGY_FIELD_INDICATORS to a 32-bit signed integer using int32.

Set EMSX_STRATEGY_FIELD_INDICATORS equal to O for each field to use the field data
setting in EMSX_FI1ELD_DATA. Or, set EMSX_STRATEGY_FIELD_INDICATORS equal to 1
to ignore the data in EMSX_FI1ELD_DATA.

Example: strat.EMSX_STRATEGY_NAME = "SSP*";
strat.EMSX _STRATEGY_FIELD INDICATORS = int32(JO0 0 0]);
strat.EMSX_STRATEGY_FIELDS = {"09:30:00","14:30:00",50};

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.

Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.

Example: options.useDefaul tEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments

events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

modifyRouteWithStrat

More About
Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.
. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-25

See Also
timer | createOrder | createOrderAndRouteWithStrat | delete | deleteOrder
| getBrokerlInfo | modifyRoute | orders | routeOrder | routes | start | stop

Introduced in R2013a

5-81

5 Functions — Alphabetical List
P

5-82

orders

Obtain Bloomberg EMSX order subscription

Syntax
[events,subs] = orders(c,fields)
[events,subs] = orders(c,fields,Name,Value)

[events,subs] = orders(c,fields,options)

Description

[events, subs] orders(c, Fields) subscribes to Bloomberg EMSX fields fields
using the Bloomberg EMSX connection Cc. orders returns existing event data events
from the event queue and the Bloomberg EMSX subscription list subs.

[events,subs] = orders(c,fields,Name,Value) uses additional options specified
by one or more Name,Value pair arguments to specify a custom event handler or timeout
value for the event handler.

[events,subs] = orders(c,fields,options) uses the options structure to
customize the output, which is useful to preconfigure and save your options for repeated
use. The options structure fields and values correspond to names and values of name-
value pair arguments, respectively.

Examples

Subscribe to Order Events Using the Default Event Handler
Create the Bloomberg EMSX connection c.
c = emsx("//blp/emapisvc_beta®);

Subscribe to events for Bloomberg EMSX orders using the Bloomberg EMSX connection c
and Bloomberg EMSX field list Fields.

orders

fields = {"EMSX_BROKER", "EMSX_AMOUNT", "EMSX_FILLED"};

[events,subs] = orders(c,fields)

events =
MSG_TYPE: {"E"}
MSG_SUB_TYPE: {"0"}
EVENT_STATUS: 4
subs =

com.bloomberglp.blpapi.SubscriptionList@4bc3dc78

events contains fields for the events currently in the event queue. subs contains the
Bloomberg EMSX subscription list object.

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
c.Session.unsubscribe(subs)
Close the Bloomberg EMSX connection.
close(c)
Subscribe to Order Events Using the Custom Event Handler
Create the Bloomberg EMSX connection C.
c = emsx("//blp/emapisvc_beta®);

Write a custom event handler function named eventhandler. Run the custom event
handler using timer. Start the timer to run eventhandler immediately using start.
For details, see “Writing and Running Custom Event Handler Functions with Bloomberg
EMSX” on page 1-25.

t = timer("TimerFcn®,{@c.eventhandler}, "Period”,1, ...
"ExecutionMode”, "fixedRate");
start(t)

t is the timer object.

Subscribe to events for Bloomberg EMSX orders using the Bloomberg EMSX connection
¢ and Bloomberg EMSX field list Fields. Use the custom event handler by setting the
name-value pair argument "useDefaultEventHandler” to false.

5-83

5 Functions — Alphabetical List
P

fields = {"EMSX_BROKER", "EMSX_AMOUNT", "EMSX_FILLED"};

[events,subs] = orders(c, fields, “useDefaultEventHandler®,false)

events =

L1

subs =
com.bloomberglp.blpapi.SubscriptionList@2c5blc7e

events contains an empty double. The custom event handler processes the event queue.
subs contains the Bloomberg EMSX subscription list object.

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
Stop the timer to stop data updates using stop.

c.Session.unsubscribe(subs)
stop(t)

If you are done processing data updates, delete the timer using delete.
delete(t)
Close the Bloomberg EMSX connection.
close(c)
Subscribe to Order Events Using a Timeout
Create the Bloomberg EMSX connection c.
c = emsx("//blp/emapisvc_beta™);

Subscribe to events for Bloomberg EMSX orders using the Bloomberg EMSX connection ¢
and Bloomberg EMSX field list Fields. Specify the name-value pair argument timeQOut
and set it to 200 milliseconds.

fields = {"EMSX_BROKER", "EMSX_AMOUNT", "EMSX_FILLED"};

[events,subs] = orders(c, fields, "timeOut”,200)

events =

5-84

orders

MSG_TYPE: {"E
MSG_SUB_TYPE: {"0
EVENT_STATUS: 4

"}
"}

subs =

com_bloomberglp.-blpapi.SubscriptionList@4bc3dc78

events contains fields for the events currently in the event queue. subs contains the
Bloomberg EMSX subscription list object.

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

close(c)
Subscribe to Order Events Using the Options Structure

Create the Bloomberg EMSX connection c.
c = emsx("//blp/emapisvc_beta®);

Create a structure options. To use the default event handler, set the field
useDefaultEventHandler to true. Set the field timeOut to 200 milliseconds.
Subscribe to events for Bloomberg EMSX orders using the Bloomberg EMSX connection
c, Bloomberg EMSX field list Fields, and options structure options.

options.timeOut = 200;
options.useDefaultEventHandler = true;

fields = {"EMSX_BROKER", "EMSX_AMOUNT", "EMSX_FILLED"};
[events,subs] = orders(c,fields,options)
events =

MSG_TYPE: {"E

"}
MSG_SUB_TYPE: {"0"}
EVENT_STATUS: 4

5-85

5 Functions — Alphabetical List
P

5-86

subs =
com_bloomberglp.blpapi.SubscriptionList@4bc3dc78

events contains fields for the events currently in the event queue. subs contains the
Bloomberg EMSX subscription list object.

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 4-12
. “Create and Manage a Bloomberg EMSX Route” on page 4-16
. “Manage a Bloomberg EMSX Order and Route” on page 4-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

fields — Bloomberg EMSX field information

cell array

Bloomberg EMSX field information, specified using a cell array. Use
getAlIFieldMetaData to view available field information for the Bloomberg EMSX
service.

Example: "EMSX_TICKER"
"EMSX_AMOUNT*
"EMSX_ORDER_TYPE*

Data Types: cell

options — Options for custom event handler or timeout value
structure

orders

Options for custom event handler or timeout value, specified as a structure. Use the
options structure instead of name-value pair arguments to reuse the optional name-value
pair arguments to specify a custom event handler or timeout value for the event handler.

The options structure field and values correspond to names and values of the name-
value pair arguments, respectively.

Specify using a custom event handler and a timeout value of 500 milliseconds.

Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: "useDefaultEventHandler* ,false

"useDefaultEventHandler™ — Flag for event handler preference
true (default) | false

Flag for event handler preference, indicating whether to use the default or custom event
handler to process order events, specified as the comma-separated pair consisting of
"useDefaultEventHandler™ and the logical values true or false.

To specify the default event handler, set this flag to true.
Otherwise, set this flag to False to specify a custom event handler.
Data Types: logical

"timeOut” — Timeout value for event handler
500 milliseconds (default) | nonnegative integer

Timeout value for event handler for the Bloomberg EMSX service, specified as the
comma-separated pair consisting of "timeOut” and a nonnegative integer in units of
milliseconds.

Example: "timeOut” ,200

5-87

5 Functions — Alphabetical List
P

5-88

Data Types: double

Output Arguments

events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

When the name-value pair argument "useDefaultEventHandler” or the same field
for the structure options is set to false, events is an empty double.

subs — Bloomberg EMSX subscription list
subscription list object

Bloomberg EMSX subscription list, returned as a Bloomberg EMSX subscription list
object.

More About

Tips

* For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using
the WAPI <GO> option from the Bloomberg terminal.

. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-25

See Also

timer | close | createOrder | createOrderAndRoute
createOrderAndRouteWithStrat | delete | deleteOrder | deleteRoute | emsx
| getAllFieldMetaData | modifyOrder | routeOrder | routes | start | stop

Introduced in R2013a

emsxOrderBlotter

emsxOrderBlotter

Bloomberg EMSX example order blotter

Syntax

[t,subs] = emsxOrderBlotter(c)

Description

[t,subs] = emsxOrderBlotter(c) displays a trader's order information. c is the
Bloomberg EMSX connection, t is the timer object associated with the event handler, and
subs is the Bloomberg EMSX subscription list.

Examples

Display the Order in an Order Blotter

Create the Bloomberg EMSX connection cC.
c = emsx("//blp/emapisvc_beta®);

Open Bloomberg EMSX order blotter using the Bloomberg EMSX connection C.
[t,subs] = emsxOrderBlotter(c)

Timer Object: timer-1

Timer Settings

ExecutionMode: fixedRate
Period: 1

BusyMode: drop
Running: on

Callbacks
TimerFcn: {@processEventToBlotter [1x1 emsx]}
ErrorFcn: **
StartFcn: **

5-89

5 Functions — Alphabetical List
P

5-90

StopFcn:

subs =
com_bloomberglp.-blpapi.SubscriptionList@3e24da58

emsxOrderBlotter returns the timer object output and the Bloomberg EMSX
subscription list object. For details about the timer object, see timer.

-
I} EMSX Order Blotter T ‘ =) B o
File Edit View Insert Tools Desktop Window Help .
SEQUENCE | TICKER SIDE TYPE | WORKING | FILLED IF BROKER | STATUS | HANDLING | AVGPRC | LMTPRC | TRADER 61D STOPPRC
381417 GOO0G BUY MKT 0 0 DAY BB 0 0 CGARVIN 0
381450 B BUY KT 0 250 DAY B8 189.79 0 COARVIN]
331491 oM BUY KT 200 200 DAY B8 18038 0 CGARVIN]
381492 iBM BUY MKT 0 DAY B8 0 CGARVIN o
381494 BM BUY MKT o 0 DAY BB 0 0 CGARVIN o
381495 BM BUY MKT 0 0 DAY BB 0 0 CGARVIN 0
381496 BM BUY MKT o 0 DAY BB o 0 CGARVIN o
(Lupdate orders | [cosa |

The order blotter displays the current order information for a trader.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 330 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order .EMSX_TICKER = "IBM";

order .EMSX_AMOUNT = int32(330);
order .EMSX_ORDER_TYPE = “MKT";

order .EMSX_BROKER = "BB";

order .EMSX_TIF = "DAY";

order .EMSX_HAND_INSTRUCTION = "ANY";
order .EMSX_SIDE = "BUY";

Create and route the order using the Bloomberg EMSX connection ¢ and the order
request structure order. Use the custom event handler processEventToBlotter by
setting the name-value pair argument "useDefaultEventHandler® to false.

events = createOrderAndRoute(c,order, "useDefaul tEventHandler” ,false)

emsxOrderBlotter

events =

L1

CreateOrderAndRoute = {

EMSX_SEQUENCE = 381499

EMSX_ROUTE_ID = 1

MESSAGE = Order created and routed

}

createOrderAndRoute creates the order, routes the order, and returns a structure
events that contains an empty double. processEventToBlotter displays output
from createOrderAndRoute with the order number EMSX_ SEQUENCE, route number
EMSX_ROUTE_ID, and message: Order created and routed.

2a EMSX Order Blottes Eﬂg
File Edit View Insert Tools Desktop Window Help El
SEQUENCE TICKER SIDE TYPE WORKING FILLED TIF BROKER STATUS HANDLING AVGPRC LMTPRC TRADER GTD STOPPRC

381417 GO0G BUY MKT 1] [} DAY BB [} 1] CGARVIN [}

381490 BM BUY MKT 1] 250 DAY BB 189.79 0 CGARVIN [}

381491 BM BUY MKT 200 200 DAY BB 189.38 1] CGARVIN []

381492 BM BUY MKT 1] 0 DAY BB 0 0 CGARVIN 0

381484 BM BUY MKT o [} DAY BB 0 1] CGARVIN [}

381495 BM BUY MKT 1] [] DAY BB o 1] CGARVIN []

321495 BM BUY MKT 0 0 DAY BB 0 0 CGARVIN 0

381489 IBM US Equity BUY 1] [} DAY BB NEW ANY [} 0 CGARVIN 1] [}

The order blotter updates using the information for the created and routed order,
where order number EMSX SEQUENCE is 381499, using the event handler function
processEventToBlotter. The order blotter updates as orders are created and
managed.

Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 4-12
. “Create and Manage a Bloomberg EMSX Route” on page 4-16

5-91

5 Functions — Alphabetical List
P

. “Manage a Bloomberg EMSX Order and Route” on page 4-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

Output Arguments

t — MATLAB timer
object

MATLAB timer, returned as a MATLAB object. For details, see timer.

subs — Bloomberg EMSX subscription list
subscription list object

Bloomberg EMSX subscription list, returned as a Bloomberg EMSX subscription list
object.

More About
Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

. “Workflow for Bloomberg EMSX” on page 2-2

See Also

timer | close | createOrder | createOrder | createOrderAndRoute |
createOrderAndRouteWithStrat | deleteOrder | deleteRoute | emsx |
modifyOrder | orders | routeOrder | routes

Introduced in R2013a

5-92

processEvent

processEvent

Sample Bloomberg EMSX event handler

Syntax

processEvent(c)

Description

processEvent(c) displays and flushes the event queue associated with the Bloomberg
EMSX connection c. processEvent is a sample event handler function. You can build a
custom event handler function to process Bloomberg EMSX events.

Examples

Continually Process the Bloomberg EMSX Event Queue
Create the Bloomberg EMSX connection c.
c = emsx("//blp/emapisvc_beta®);

Use timer to continually process the Bloomberg EMSX event queue.

t = timer(“TimerFcn®,{@c.eventhandler}, “Period",1, ...
“ExecutionMode®, "fixedRate™)

t is the MATLAB timer object. For details, see timer.

Close the Bloomberg EMSX connection.
close(c)
Process the Bloomberg EMSX Event Queue Once
Create the Bloomberg EMSX connection c.

c = emsx("//blp/emapisvc_beta®);

Use the default event handler function processEvent to process the Bloomberg EMSX
event queue once.

5-93

5 Functions — Alphabetical List
P

processEvent(c)

SessionConnectionUp = {
server = "localhost/127.0.0.1:8194"
}
SessionStarted = {
}
ServiceOpened = {
serviceName = "//blp/emapisvc_beta"
}
processEvent clears the Bloomberg EMSX event queue.

Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 4-12
. “Create and Manage a Bloomberg EMSX Route” on page 4-16
. “Manage a Bloomberg EMSX Order and Route” on page 4-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

More About
Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

5-94

processEvent

. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-25

See Also

timer | close | createOrder | createOrderAndRoute |
createOrderAndRouteWithStrat | deleteOrder | deleteRoute | emsx |
modifyOrder | orders | routeOrder | routes

Introduced in R2013a

5-95

5 Functions — Alphabetical List
P

5-96

routeOrder

Route Bloomberg EMSX order

Syntax

events = routeOrder(c,route)
events = routeOrder(c,route, "timeOut”,timeout)

routeOrder(, "useDefaul tEventHandler* ,false)

= routeOrder(c,route,options)

Description

events = routeOrder(c,route) routes a Bloomberg EMSX order using the
Bloomberg EMSX connection ¢ and route request route. routeOrder returns a status
message using the default event handler.

events = routeOrder(c,route, "timeOut”,timeout) specifies a timeout value
timeout for the execution of the default event handler.

routeOrder(____ ,"useDefaultEventHandler” ,false) routes a Bloomberg EMSX
order using any of the input arguments in the previous syntaxes and a custom event
handler. Write a custom event handler to process the events associated with routing
orders. This syntax does not have an output argument because the custom event handler
processes the contents of the event queue. If you want to use the default event handler
instead, set the flag "useDefaultEventHandler" to true and use the events output
argument. By default, the flag "useDefaultEventHandler" is set to true.

= routeOrder(c, route,options) uses the options structure to customize
the output, which is useful to preconfigure and save your options for repeated use. The
available options structure fields are timeOut and useDefaultEventHandler. Use
the events output argument when the flag useDefaultEventHandler is set to true
and omit this output argument when useDefaul tEventHandler is set to False.

routeOrder

Examples

Route an Order Using the Default Event Handler

To route a Bloomberg EMSX order, create the connection c using emsx, set up the order
subscription using orders, and create the order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page
4-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using INt32. This code specifies to route 100 shares of IBM to the broker BB using any
hand instruction and the order number 335877.

route.EMSX_SEQUENCE = int32(335877);

route.EMSX_TICKER = "IBM";
route.EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = "BB~;

route.EMSX_HAND_INSTRUCTION = "ANY";

Route the order using the Bloomberg EMSX connection ¢ and route.

events = routeOrder(c,route)

events

EMSX_SEQUENCE: 335877
EMSX_ROUTE _ID: 1
MESSAGE: "Order Routed”

The default event handler processes the events associated with routing the order.
routeOrder returns events as a structure that contains these fields:

* Bloomberg EMSX order number

* Bloomberg EMSX route identifier

+ Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list

objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

5-97

5 Functions — Alphabetical List
P

5-98

Close the Bloomberg EMSX connection.
close(c)
Route an Order Using a Timeout

To route a Bloomberg EMSX order, create the connection c using emsx, set up the order
subscription using orders, and create the order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page
4-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using Int32. This code specifies to route 100 shares of IBM to the broker BB using any
hand instruction and the order number 335877.

route.EMSX_SEQUENCE = int32(335877);

route.EMSX_TICKER = "IBM";
route .EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = "BB";

route .EMSX_HAND_INSTRUCTION = “ANY";

Route the order using the Bloomberg EMSX connection ¢ and route. Set the timeout
value to 200 milliseconds.

events = routeOrder(c,route, "timeOut”,200)

events =

EMSX_SEQUENCE: 335877
EMSX_ROUTE_ID: 1
MESSAGE: "Order Routed"”

The default event handler processes the events associated with routing the order.
routeOrder returns events as a structure that contains these fields:

* Bloomberg EMSX order number

* Bloomberg EMSX route identifier

* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list

objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)

routeOrder

c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)
Route an Order Using a Custom Event Handler

To route a Bloomberg EMSX order, create the connection € using emsx, set up the order
subscription using orders, and create the order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page
4-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using INt32. This code specifies to route 100 shares of IBM to the broker BB using any
hand instruction and the order number 335877.

route.EMSX_SEQUENCE = int32(335877);

route.EMSX_TICKER = "IBM";
route.EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = "BB";

route .EMSX_HAND_INSTRUCTION = “ANY";

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-25.

t = timer("TimerFcn® ,{@c.eventhandler}, "Period",1, ...

"ExecutionMode”, " fixedRate"™)
start(t)

t is the MATLAB timer object. For details, see timer.

Route the order using the Bloomberg EMSX connection ¢ and route. Set the flag
"useDefaultEventHandler"™ to false so that eventhandler processes the events
associated with routing an order.

routeOrder(c,route, "useDefaultEventHandler®,false)

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs. Stop the timer to stop data updates using stop.

5-99

5 Functions — Alphabetical List
P

5-100

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)
stop(t)

If you are done processing data updates, delete the timer using delete.

delete(t)

Close the Bloomberg EMSX connection.

close(c)
Route an Order Using an Options Structure

To route a Bloomberg EMSX order, create the connection € using emsx, set up the order
subscription using orders, and create the order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page
4-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using INt32. This code specifies to route 100 shares of IBM to the broker BB using any
hand instruction and the order number 335877.

route.EMSX_SEQUENCE = int32(335877);

route.EMSX_TICKER = "IBM";
route . EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = "BB";

route .EMSX_HAND_INSTRUCTION = "ANY";

Create a structure options. To use the default event handler, set the field
useDefaul tEventHandler to true. Set the field timeOut to 200 milliseconds. Route
the order using the Bloomberg EMSX connection c, route, and options structure
options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = routeOrder(c,route,options)

events

EMSX_SEQUENCE: 335877
EMSX_ROUTE_ID: 1
MESSAGE: "Order Routed"”

routeOrder

The default event handler processes the events associated with routing the order.
routeOrder returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 4-12
. “Create and Manage a Bloomberg EMSX Route” on page 4-16
. “Manage a Bloomberg EMSX Order and Route” on page 4-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

route — Route request
structure

Route request, specified as a structure containing these fields.

Convert the numbers to 32-bit signed integers using int32. EMSX_SEQUENCE must
denote an existing order sequence number.

Field Description
EMSX_SEQUENCE Bloomberg EMSX order sequence number
EMSX_TICKER Bloomberg EMSX ticker symbol

5-101

5 Functions — Alphabetical List
P

5-102

Field Description

EMSX_AMOUNT Bloomberg EMSX number of shares
EMSX_BROKER Bloomberg EMSX broker name
EMSX_HAND_ INSTRUCTION Bloomberg EMSX hand instruction

Example: route .EMSX_SEQUENCE = int32(728918);
route.EMSX_TICKER = "XYZ";

route .EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = "BB";
route.EMSX_HAND_INSTRUCTION = "ANY";

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.

Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.

Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments

events — Event queue contents
double | structure

routeOrder

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

More About

Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-25

See Also

timer | close | createOrder | createOrderAndRoute |
createOrderAndRouteWithStrat | delete | deleteOrder | deleteRoute | emsx
| modifyOrder | orders | routeOrderWithStrat | routes | start | stop

Introduced in R2013a

5-103

5 Functions — Alphabetical List
P

5-104

groupRouteOrderWithStrat

Route multiple Bloomberg EMSX orders with strategies

Syntax

events = groupRouteOrderWithStrat(c, route,strat)
events = groupRouteOrderWithStrat(c,route,strat, "timeOut”,timeout)

groupRouteOrderWithStrat(, "useDefaultEventHandler" ,false)

= groupRouteOrderWithStrat(c,route,strat,options)

Description

events = groupRouteOrderWithStrat(c, route,strat) routes multiple
Bloomberg EMSX orders with strategies using the Bloomberg EMSX connection c, route
request route, and strategy strat. routeOrderWithStrat returns the order sequence
number, route number, and status message using the default event handler.

events = groupRouteOrderWithStrat(c,route,strat, "timeOut”,timeout)
specifies a timeout value timeout for the execution of the default event handler.

groupRouteOrderWithStrat(___ , "useDefaultEventHandler®, false)

routes multiple Bloomberg EMSX orders with strategies using any of the input
arguments in the previous syntaxes and a custom event handler. To process the events
associated with routing orders, write a custom event handler. This syntax does not
have an output argument because the custom event handler processes the contents

of the event queue. If you want to use the default event handler instead, set the flag
"useDefaultEventHandler" to true and use the events output argument. By
default, the flag "useDefaultEventHandler” is set to true.

= groupRouteOrderWithStrat(c,route,strat,options) uses the
options structure to customize the output, which is useful to preconfigure and save
your options for repeated use. The available options structure fields are timeOut
and useDefaul tEventHandler. Use the events output argument when the flag
useDefaul tEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

groupRouteOrderWithStrat

Examples

Route Orders Using the Default Event Handler

To route a Bloomberg EMSX order with strategies, create the connection ¢ using emsx,
set up the order subscription using orders, and create the order using createOrder.

For an example showing these activities, see “Create and Manage a Bloomberg EMSX

Order” on page 4-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using Int32. This code specifies these route request fields:

* Order numbers 335877 and 335878

+ Stock symbol IBM

* 100 percent of shares shown on the order to be routed
* Broker BMTB

* Any hand instruction

* Time in force set to DAY

* Market order type

route.EMSX_SEQUENCE = {int32(335877);int32(335878)};
route.EMSX_TICKER = "I1BM";

route .EMSX_AMOUNT_PERCENT = int32(100);
route.EMSX_BROKER = "BMTB";
route.EMSX_HAND_INSTRUCTION = "ANY";

route.EMSX_TIF = "DAY";

route.EMSX_ORDER_TYPE = "MKT";

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using Int32.

strat.EMSX_STRATEGY _NAME = "SSP";
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 0]);
strat.EMSX_STRATEGY_FIELDS = {"09:30:00","14:30:00",50};

Route the orders using the Bloomberg EMSX connection ¢, route, and strat.

events = groupRouteOrderWithStrat(c,route,strat)

events

5-105

5 Functions — Alphabetical List
P

5-106

EMSX_SUCCESS_ROUTES: [1x1 struct]
EMSX_FAILED ROUTES: [1x1 struct]
MESSAGE: "1 of 1 Order(s) Routed*®

where
events.EMSX_ SUCCESS ROUTES =

EMSX_SEQUENCE: 335877
EMSX_ROUTE_ID: 1

and events.EMSX_FAILED ROUTES =

EMSX_SEQUENCE: 335878
ERROR_CODE: 0
ERROR_MESSAGE: {"Order 335878 View-only orders can not be routed®}

The default event handler processes the events associated with routing the order.
groupRouteOrderWithStrat returns events as a structure that contains these fields:

* Bloomberg EMSX success routing structure, which contains the order number and
route identifier for the orders that successfully routed

* Bloomberg EMSX failed routing structure, which contains the order number, error
code, and error message for the orders that failed to route

* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.
close(c)
Route Orders Using a Timeout

To route a Bloomberg EMSX order with strategies, create the connection C using emsx,
set up the order subscription using orders, and create the order using createOrder.

For an example showing these activities, see “Create and Manage a Bloomberg EMSX

Order” on page 4-12. Set up the route subscription using routes.

groupRouteOrderWithStrat

Define the route request structure route. Convert the numbers to 32-bit signed integers
using Int32. This code specifies these route request fields:

* Order numbers 335877 and 335878

+ Stock symbol IBM

* 100 percent of shares shown on the order to be routed
* Broker BMTB

* Any hand instruction

* Time in force set to DAY

* Market order type

route.EMSX_SEQUENCE = {int32(335877);int32(335878)};
route.EMSX_TICKER = "I1BM";

route.EMSX_AMOUNT_PERCENT = int32(100);
route.EMSX_BROKER = "BMTB";
route.EMSX_HAND_INSTRUCTION = “ANY";

route . EMSX_TIF = "DAY";

route.EMSX_ORDER_TYPE = "MKT";

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using Int32.

strat.EMSX_STRATEGY _NAME = "SSP";
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 0]);
strat.EMSX_STRATEGY_FIELDS = {"09:30:00","14:30:00",50};

Route the orders using the Bloomberg EMSX connection c, route, and strat. Set the
timeout value to 200 milliseconds.

events = groupRouteOrderWithStrat(c,route,strat, "timeOut”,200)

events
EMSX_SUCCESS_ROUTES: [1x1 struct]
EMSX_FAILED ROUTES: [1x1 struct]
MESSAGE: "1 of 1 Order(s) Routed*®
where

events.EMSX_ SUCCESS ROUTES =

EMSX_SEQUENCE: 335877

5-107

5 Functions — Alphabetical List
P

EMSX_ROUTE_ID: 1
and events.EMSX_FAILED ROUTES =

EMSX_SEQUENCE: 335878
ERROR_CODE: 0
ERROR_MESSAGE: {"Order 335878 View-only orders can not be routed®}

The default event handler processes the events associated with routing the order.
groupRouteOrderWithStrat returns events as a structure that contains these fields:

* Bloomberg EMSX success routing structure, which contains the order number and
route identifier for the orders that successfully routed

* Bloomberg EMSX failed routing structure, which contains the order number, error
code, and error message for the orders that failed to route

* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)
Route Orders Using a Custom Event Handler

To route a Bloomberg EMSX order with strategies, create the connection € using emsx,
set up the order subscription using orders, and create the order using createOrder.
For an example showing these activities, see “Create and Manage a Bloomberg EMSX

Order” on page 4-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using Int32. This code specifies these route request fields:

* Order numbers 335877 and 335878
* Stock symbol IBM

+ 100 percent of shares shown on the order to be routed

5-108

groupRouteOrderWithStrat

* Broker BMTB
* Any hand instruction
+ Time in force set to DAY

* Market order type

route.EMSX_SEQUENCE = {int32(335877);int32(335878)};
route.EMSX_TICKER = "1BM";

route.EMSX_AMOUNT_PERCENT = int32(100);
route.EMSX_BROKER = *BMTB";
route.EMSX_HAND_INSTRUCTION = "ANY";

route.EMSX_TIF = "DAY";

route.EMSX_ORDER_TYPE = "NKT";

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using Int32.

strat.EMSX_STRATEGY NAME = "SSP";
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 0]);
strat.EMSX_STRATEGY FIELDS = {"09:30:00","14:30:00",50};

Suppose that you create a custom event handler function called eventhandler with
input argument c. Run eventhandler using timer. To run eventhandler immediately,
start the timer using start. For details, see “Writing and Running Custom Event
Handler Functions with Bloomberg EMSX” on page 1-25.

t = timer("TimerFcn®,{@c-eventhandler}, "Period”,1, ...
"ExecutionMode®, "fixedRate")
start(t)

t is the MATLAB timer object. For details, see timer.

Route the orders using the Bloomberg EMSX connection c, route, and strat. Set the
flag "useDefaultEventHandler" to false so that eventhandler processes the
events associated with routing an order.

groupRouteOrderWithStrat(c,route,strat, "useDefaul tEventHandler® ,false)

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs. To stop data updates, stop the timer using stop.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

5-109

5 Functions — Alphabetical List
P

stop(t)

If you are done processing data updates, delete the timer using delete.

delete(t)

Close the Bloomberg EMSX connection.

close(c)
Route Orders Using an Options Structure

To route a Bloomberg EMSX order with strategies, create the connection ¢ using emsx,
set up the order subscription using orders, and create the order using createOrder.

For an example showing these activities, see “Create and Manage a Bloomberg EMSX

Order” on page 4-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using INt32. This code specifies these route request fields:

* Order numbers 335877 and 335878

* Stock symbol IBM

* 100 percent of shares shown on the order to be routed

* Broker BMTB

* Any hand instruction

* Time in force set to DAY

* Market order type

route_EMSX_SEQUENCE = {int32(335877);int32(335878)};
route.EMSX TICKER = "IBM";

route_EMSX_AMOUNT_PERCENT = int32(100);

route.EMSX BROKER = "BMTB";
route.EMSX _HAND_ INSTRUCTION = “ANY";

route . EMSX_TIF = "DAY";

route.EMSX _ORDER_TYPE = “MKT";

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using Int32.

strat.EMSX_STRATEGY NAME = "SSP";
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 0]);

5-110

groupRouteOrderWithStrat

strat.EMSX_STRATEGY_FIELDS = {"09:30:00%,"14:30:00",50};

Create a structure options. To use the default event handler, set the field
useDefaultEventHandler to true. Set the field timeOut to 200 milliseconds.
Route the orders using the Bloomberg EMSX connection c, route, strat, and options
structure options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = groupRouteOrderWithStrat(c,route,strat,options)

events =

EMSX_SUCCESS_ROUTES: [1x1 struct]
EMSX_FAILED _ROUTES: [1x1 struct]
MESSAGE: "1 of 1 Order(s) Routed®

where
events.EMSX_ SUCCESS ROUTES =

EMSX_SEQUENCE: 335877
EMSX_ROUTE_ID: 1

and events.EMSX_ FAILED ROUTES =

EMSX_SEQUENCE: 335878
ERROR_CODE: 0
ERROR_MESSAGE: {"Order 335878 View-only orders can not be routed®}

The default event handler processes the events associated with routing the order.
groupRouteOrderWithStrat returns events as a structure that contains these fields:

* Bloomberg EMSX success routing structure, which contains the order number and
route identifier for the orders that successfully routed

* Bloomberg EMSX failed routing structure, which contains the order number, error
code, and error message for the orders that failed to route

* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

5-111

5 Functions — Alphabetical List
P

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 4-12
. “Create and Manage a Bloomberg EMSX Route” on page 4-16
. “Manage a Bloomberg EMSX Order and Route” on page 4-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

route — Route request
structure

Route request, specified as a structure containing these fields.

Convert the numbers to 32-bit signed integers using int32. EMSX_SEQUENCE must
denote an existing order sequence number.

Field Description

EMSX_SEQUENCE Bloomberg EMSX order sequence number
EMSX_TICKER Bloomberg EMSX ticker symbol
EMSX_AMOUNT Bloomberg EMSX number of shares
EMSX_BROKER Bloomberg EMSX broker name
EMSX_HAND__INSTRUCTION Bloomberg EMSX hand instruction
EMSX_TIF Bloomberg EMSX time in force
EMSX_ORDER_TYPE Bloomberg EMSX order type

Example: route.EMSX_SEQUENCE = int32(728918);
route.EMSX TICKER = "XYZ";

5-112

groupRouteOrderWithStrat

route.EMSX AMOUNT = int32(100);
route.EMSX BROKER = "BB";
route.EMSX_HAND_INSTRUCTION = “ANY"*;
route.EMSX TIF = "DAY";
route.EMSX_ORDER_TYPE = *MKT*";

Data Types: struct

strat — Order strategies
structure

Order strategies, specified as a structure that contains the fields:
EMSX_STRATEGY_NAME, EMSX_STRATEGY_FIELD_INDICATORS, and
EMSX_STRATEGY_FIELDS. The structure field values must align with the strategy fields
specified by EMSX_STRATEGY_NAME. For details about strategy fields and ordering, see
getBrokerinfo.

Convert EMSX_STRATEGY_FIELD_INDICATORS to a 32-bit signed integer using int32.

Set EMSX_STRATEGY_FIELD_INDICATORS equal to O for each field to use the field data
setting in EMSX_FIELD_DATA. Or, set EMSX_STRATEGY_FIELD_INDICATORS equal to 1
to ignore the data in EMSX_FI1ELD_DATA.

Example: strat_EMSX_STRATEGY_NAME = "SSP";
strat_.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 0]):
strat_EMSX_STRATEGY_FIELDS = {"09:30:00","14:30:00",50};

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.

Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

5-113

5 Functions — Alphabetical List
P

5-114

Specify using a custom event handler and a timeout value of 500 milliseconds.

Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments

events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

More About

Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-25

See Also

timer | close | createOrder | createOrderAndRoute |
createOrderAndRouteWithStrat | delete | deleteOrder | deleteRoute | emsx
| getBrokeriInfo | modifyOrder | orders | routeOrder | routeOrderWithStrat
| routes | start | stop

Introduced in R2015b

routeOrderWithStrat

routeOrderWithStrat

Route Bloomberg EMSX order with strategies

Syntax

events = routeOrderWithStrat(c, route,strat)
events routeOrderWithStrat(c,route,strat, "timeOut”,timeout)

routeOrderWithStrat(, "useDefaultEventHandler" ,false)

= routeOrderWithStrat(c,route,strat,options)

Description

events = routeOrderWithStrat(c,route,strat) routes a Bloomberg EMSX
order with strategies using the Bloomberg EMSX connection ¢, route request route,
and strategy strat. routeOrderWithStrat returns the order sequence number, route
number, and status message using the default event handler.

events = routeOrderWithStrat(c, route,strat, "timeOut”, timeout) specifies
a timeout value timeout for the execution of the default event handler.

routeOrderWithStrat(___ , "useDefaultEventHandler®,false) routes a
Bloomberg EMSX order with strategies using any of the input arguments in the
previous syntaxes and a custom event handler. Write a custom event handler to
process the events associated with routing orders. This syntax does not have an
output argument because the custom event handler processes the contents of the
event queue. If you want to use the default event handler instead, set the flag
"useDefaultEventHandler" to true and use the events output argument. By
default, the flag "useDefaultEventHandler" is set to true.

= routeOrderWithStrat(c,route,strat,options) uses the options
structure to customize the output, which is useful to preconfigure and save your
options for repeated use. The available options structure fields are timeOut
and useDefaul tEventHandler. Use the events output argument when the flag
useDefaul tEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

5-115

5 Functions — Alphabetical List
P

5-116

Examples

Route an Order Using the Default Event Handler

To route a Bloomberg EMSX order with strategies, create the connection C using emsx,
set up the order subscription using orders, and create the order using createOrder.
For an example showing these activities, see “Create and Manage a Bloomberg EMSX

Order” on page 4-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using Int32. This code specifies to route 100 shares of IBM to the broker BMTB using any
hand instruction and the order number 335877.

route.EMSX_SEQUENCE = int32(335877);

route EMSX_TICKER = "IBM";
route.EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = "BMTB";

route.EMSX_HAND_INSTRUCTION = "ANY";

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using Int32.

strat.EMSX_STRATEGY _NAME = "SSP";
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 0]);
strat.EMSX_STRATEGY_FIELDS = {"09:30:00","14:30:00",50};

Route the order using the Bloomberg EMSX connection c, route, and strat.

events = routeOrderWithStrat(c,route,strat)
events =

EMSX_SEQUENCE: 335877
EMSX_ROUTE_ID: 1
MESSAGE: "Order Routed”

The default event handler processes the events associated with routing the order.
routeOrderWithStrat returns events as a structure that contains these fields:

* Bloomberg EMSX order number
* Bloomberg EMSX route identifier
* Bloomberg EMSX message

routeOrderWithStrat

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)
Route an Order Using a Timeout

To route a Bloomberg EMSX order with strategies, create the connection C using emsx,
set up the order subscription using orders, and create the order using createOrder.

For an example showing these activities, see “Create and Manage a Bloomberg EMSX

Order” on page 4-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using Int32. This code specifies to route 100 shares of IBM to the broker BMTB using any
hand instruction and the order number 335877.

route.EMSX_SEQUENCE = int32(335877);

route.EMSX_TICKER = "IBM";
route.EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = "BMTB";

route.EMSX_HAND_INSTRUCTION = "ANY";

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat.EMSX_STRATEGY_NAME = "SSP*;
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 01);
strat.EMSX_STRATEGY_FIELDS = {"09:30:007,"14:30:00",50};

Route the order using the Bloomberg EMSX connection C, route, and strat. Set the
timeout value to 200 milliseconds.

events = routeOrderWithStrat(c,route,strat, "timeOut”,200)

events =

EMSX_SEQUENCE: 335877
EMSX_ROUTE_ID: 1
MESSAGE: "Order Routed"”

5-117

5 Functions — Alphabetical List
P

The default event handler processes the events associated with routing the order.
routeOrderWithStrat returns events as a structure that contains these fields:

* Bloomberg EMSX order number

* Bloomberg EMSX route identifier

* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list

objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)
Route an Order Using a Custom Event Handler

To route a Bloomberg EMSX order with strategies, create the connection ¢ using emsx,
set up the order subscription using orders, and create the order using createOrder.

For an example showing these activities, see “Create and Manage a Bloomberg EMSX

Order” on page 4-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using Int32. This code specifies to route 100 shares of IBM to the broker BMTB using any
hand instruction and the order number 335877.

route.EMSX_SEQUENCE = int32(335877);

route.EMSX_TICKER = "IBM";
route.EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = "BMTB";

route .EMSX_HAND_INSTRUCTION = "ANY";

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat.EMSX_STRATEGY_NAME = "SSP*;
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 01);
strat.EMSX_STRATEGY_FIELDS = {"09:30:00%,"14:30:00",50};

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler

5-118

routeOrderWithStrat

immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-25.

t = timer("TimerFcn”®,{@c-eventhandler}, "Period”,1, ...
"ExecutionMode®, "fixedRate")
start(t)

t is the MATLAB timer object. For details, see timer.

Route the order using the Bloomberg EMSX connection C, route, and strat. Set the
flag "useDefaultEventHandler" to false so that eventhandler processes the
events associated with routing an order.

routeOrderWithStrat(c,route,strat, "useDefaul tEventHandler"” ,false)

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs. Stop the timer to stop data updates using stop.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)
stop(t)

If you are done processing data updates, delete the timer using delete.
delete(t)
Close the Bloomberg EMSX connection.

close(c)
Route an Order Using an Options Structure

To route a Bloomberg EMSX order with strategies, create the connection ¢ using emsx,
set up the order subscription using orders, and create the order using createOrder.
For an example showing these activities, see “Create and Manage a Bloomberg EMSX

Order” on page 4-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using INt32. This code specifies to route 100 shares of IBM to the broker BMTB using any
hand instruction and the order number 335877.

route.EMSX_SEQUENCE = int32(335877);
route.EMSX_TICKER = "IBM";
route.EMSX_AMOUNT = int32(100);

5-119

5 Functions — Alphabetical List
P

route_EMSX_BROKER = "BMTB";
route .EMSX_HAND_INSTRUCTION = "ANY";

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using Int32.

strat.EMSX_STRATEGY_NAME = "SSP*;
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 01);
strat.EMSX_STRATEGY_FIELDS = {"09:30:007,"14:30:00",50};

Create a structure options. To use the default event handler, set the field
useDefaultEventHandler to true. Set the field timeOut to 200 milliseconds. Route
the order using the Bloomberg EMSX connection c, route, strat, and options structure
options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = routeOrderWithStrat(c,route,strat,options)

events =

EMSX_SEQUENCE: 335877
EMSX_ROUTE_ID: 1
MESSAGE: "Order Routed"”

The default event handler processes the events associated with routing the order.
routeOrderWithStrat returns events as a structure that contains these fields:

+ Bloomberg EMSX order number
* Bloomberg EMSX route identifier
* Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 4-12

5-120

routeOrderWithStrat

. “Create and Manage a Bloomberg EMSX Route” on page 4-16
. “Manage a Bloomberg EMSX Order and Route” on page 4-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

route — Route request
structure

Route request, specified as a structure containing these fields.

Convert the numbers to 32-bit signed integers using int32. EMSX_SEQUENCE must
denote an existing order sequence number.

Field Description

EMSX_SEQUENCE Bloomberg EMSX order sequence number
EMSX_TICKER Bloomberg EMSX ticker symbol
EMSX_AMOUNT Bloomberg EMSX number of shares
EMSX_BROKER Bloomberg EMSX broker name
EMSX_HAND__INSTRUCTION Bloomberg EMSX hand instruction

Example: route.EMSX_SEQUENCE = 1nt32(728918);
route.EMSX_ TICKER "XYZ*;
route.EMSX_AMOUNT = int32(100);

route.EMSX BROKER = "BB";
route.EMSX HAND_ INSTRUCTION = “ANY";

Data Types: struct

strat — Order strategies
structure

Order strategies, specified as a structure that contains the fields:
EMSX_STRATEGY_NAME, EMSX_STRATEGY_FIELD_INDICATORS, and

5-121

5 Functions — Alphabetical List
P

5-122

EMSX_STRATEGY_FIELDS. The structure field values must align with the strategy fields
specified by EMSX_STRATEGY_NAME. For details about strategy fields and ordering, see
getBrokerInfo.

Convert EMSX_STRATEGY_FIELD_INDICATORS to a 32-bit signed integer using int32.

Set EMSX_STRATEGY_FIELD_INDICATORS equal to O for each field to use the field data
setting in EMSX_FIELD_DATA. Or, set EMSX_STRATEGY_FIELD_INDICATORS equal to 1
to ignore the data in EMSX_FI1ELD_DATA.

Example: strat_EMSX_STRATEGY_NAME = "SSP";
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 O 0]);
strat.EMSX_STRATEGY FIELDS = {"09:30:00","14:30:00",50};

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.

Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.

Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments

events — Event queue contents
double | structure

routeOrderWithStrat

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

More About

Tips

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-25

See Also

timer | close | createOrder | createOrderAndRoute |
createOrderAndRouteWithStrat | delete | deleteOrder | deleteRoute | emsx
| getBrokerlInfo | modifyOrder | orders | routeOrder | routes | start | stop

Introduced in R2013a

5-123

5 Functions — Alphabetical List
P

5-124

routes

Obtain Bloomberg EMSX route subscription

Syntax
[events,subs] = routes(c,fields)
[events,subs] = routes(c,fields,Name,Value)

[events,subs] = routes(c,fields,options)

Description

[events, subs] routes(c, fields) subscribes to Bloomberg EMSX fields Fields
using the Bloomberg EMSX connection C. routes returns existing event data events
from the event queue and the Bloomberg EMSX subscription list subs.

[events,subs] = routes(c,fields,Name,Value) uses additional options specified
by one or more Name,Value pair arguments to specify a custom event handler or timeout
value for the event handler.

[events,subs] = routes(c,fields,options) uses the options structure to
customize the output, which is useful to preconfigure and save your options for repeated
use. The options structure fields and values correspond to names and values of name-
value pair arguments, respectively.

Examples

Set Up Route Subscription Using the Default Event Handler
Create the Bloomberg EMSX connection c.
c = emsx("//blp/emapisvc_beta®);

Set up the route subscription for Bloomberg EMSX fields EMSX_BROKER and
EMSX_WORKING using the Bloomberg EMSX connection cC.

routes

fields = {"EMSX_BROKER", "EMSX_WORKING"};

[events,subs] = routes(c,fields)

events =
MSG_TYPE: {5x1 cell}
MSG_SUB_TYPE: {5x1 cell}
EVENT_STATUS: [5x1 int32]
subs =

com.bloomberglp.blpapi.SubscriptionList@463b9287

events contains fields for the events currently in the event queue. subs contains the
Bloomberg EMSX subscription list object.

Unsubscribe from route events using the Bloomberg EMSX subscription list object subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

close(c)
Set Up Route Subscription Using a Custom Event Handler

Create the Bloomberg EMSX connection c.
c = emsx("//blp/emapisvc_beta®);

Write a custom event handler function named eventhandler. Run the custom event
handler using timer. Start the timer to run eventhandler immediately using start.
For details, see “Writing and Running Custom Event Handler Functions with Bloomberg
EMSX” on page 1-25.

t = timer("TimerFcn®,{@c.eventhandler}, "Period",1, ...
"ExecutionMode®, "fixedRate™);
start(t)

t is the timer object.

Set up the route subscription for Bloomberg EMSX fields EMSX_BROKER and
EMSX_WORKING using the Bloomberg EMSX connection c. Use the custom event handler
by setting the name-value pair argument "useDefaultEventHandler” to false.

5-125

5 Functions — Alphabetical List
P

fields = {"EMSX_BROKER", "EMSX_WORKING"};
[events,subs] = routes(c, fields, "useDefaultEventHandler®,false)
events =
1
subs =
com.bloomberglp.blpapi.SubscriptionList@463b9287

events is an empty double. The custom event handler processes the event queue. subs
contains the Bloomberg EMSX subscription list object.

Unsubscribe from route events using the Bloomberg EMSX subscription list object subs.
Stop the timer to stop data updates using stop.

c.Session.unsubscribe(subs)
stop(t)

If you are done processing data updates, delete the timer using delete.
delete(t)
Close the Bloomberg EMSX connection.
close(c)
Set Up Route Subscription Using a Timeout
Create the Bloomberg EMSX connection c.
c = emsx("//blp/emapisvc_beta®);

Set up the route subscription for Bloomberg EMSX fields EMSX_BROKER and
EMSX_WORKING using the Bloomberg EMSX connection c. Specify the name-value pair
argument timeOut and set it to 200 milliseconds.

fields = {"EMSX_BROKER", "EMSX_WORKING"};

[events,subs] = routes(c,fields, "timeOut”,200)

events =

5-126

routes

MSG_TYPE: {5x1 cell}
MSG_SUB_TYPE: {5x1 cell}
EVENT_STATUS: [5x1 int32]
subs =

com_bloomberglp.-blpapi.SubscriptionList@463b9287

events contains fields for the events currently in the event queue. subs contains the
Bloomberg EMSX subscription list object.

Unsubscribe from route events using the Bloomberg EMSX subscription list object subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

close(c)
Set Up Route Subscription Using an Options Structure

Create the Bloomberg EMSX connection c.
c = emsx("//blp/emapisvc_beta®);

Create a structure options. To use the default event handler, set the field

useDefaul tEventHandler to true. Set the field timeOut to 200 milliseconds. Set up
the route subscription for Bloomberg EMSX fields EMSX_BROKER and EMSX_WORKING
using the Bloomberg EMSX connection ¢ and options structure options.

options.useDefaultEventHandler = true;
options.timeOut = 200;
fields = {"EMSX_BROKER", "EMSX_WORKING"};
[events,subs] = routes(c,fields,options)
events =

MSG_TYPE: {5x1 cell}

MSG_SUB_TYPE: {5x1 cell}
EVENT_STATUS: [5x1 int32]

5-127

5 Functions — Alphabetical List
P

5-128

subs =
com_bloomberglp.blpapi.SubscriptionList@463b9287

events contains fields for the events currently in the event queue. subs contains the
Bloomberg EMSX subscription list object.

Unsubscribe from route events using the Bloomberg EMSX subscription list object subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.
close(c)

. “Create and Manage a Bloomberg EMSX Order” on page 4-12
. “Create and Manage a Bloomberg EMSX Route” on page 4-16
. “Manage a Bloomberg EMSX Order and Route” on page 4-21

Input Arguments

¢ — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using emsx.

fields — Bloomberg EMSX field information

cell array

Bloomberg EMSX field information, specified using a cell array. Use
getAlIFieldMetaData to view available field information for the Bloomberg EMSX
service.

Example: "EMSX_TICKER"
"EMSX_AMOUNT*
"EMSX_ORDER_TYPE*

Data Types: cell

options — Options for custom event handler or timeout value
structure

routes

Options for custom event handler or timeout value, specified as a structure. Use the
options structure instead of name-value pair arguments to reuse the optional name-value
pair arguments to specify a custom event handler or timeout value for the event handler.

The options structure field and values correspond to names and values of the name-
value pair arguments, respectively.

Specify using a custom event handler and a timeout value of 500 milliseconds.

Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: "useDefaultEventHandler* ,false

"useDefaultEventHandler™ — Flag for event handler preference
true (default) | false

Flag for event handler preference, indicating whether to use the default or custom event
handler to process order events, specified as the comma-separated pair consisting of
"useDefaultEventHandler™ and the logical values true or false.

To specify the default event handler, set this flag to true.
Otherwise, set this flag to False to specify a custom event handler.
Data Types: logical

"timeOut” — Timeout value for event handler
500 milliseconds (default) | nonnegative integer

Timeout value for event handler for the Bloomberg EMSX service, specified as the
comma-separated pair consisting of "timeOut” and a nonnegative integer in units of
milliseconds.

Example: "timeOut” ,200

5-129

5 Functions — Alphabetical List
P

5-130

Data Types: double

Output Arguments

events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

When the name-value pair argument "useDefaultEventHandler” or the same field
for the structure options is set to false, events is an empty double.

subs — Bloomberg EMSX subscription list
subscription list object

Bloomberg EMSX subscription list, returned as a Bloomberg EMSX subscription list
object.

More About
Tips

* For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using
the WAPI <GO> option from the Bloomberg terminal.

* Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using this code.

t = timer("TimerFcn®,{@c.eventhandler}, "Period”,1, ...
"ExecutionMode”, "fixedRate")

t is the MATLAB timer object. For details, see timer.

. “Workflow for Bloomberg EMSX” on page 2-2

. “Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on
page 1-25

routes

See Also

timer | close | createOrder | createOrderAndRoute |
createOrderAndRouteWithStrat | delete | deleteOrder | deleteRoute | emsx
| getAllFieldMetaData | modifyOrder | modifyRoute | orders | routeOrder |
start | stop

Introduced in R2013a

5-131

5 Functions — Alphabetical List
P

xtrdr

Create X_TRADER connection

Syntax

X = xtrdr

Description

X = xtrdr starts X_TRADER or connects to an existing X_TRADER session.

Examples

Create a Connection to X_TRADER
X = xtrdr
X =

xtrdr with properties:

Gate: [1x1 COM.Xtapi_TTGate 1]

InstrNotify: []

Instrument: []

OrderSet: []

“Create an Order Using X_TRADER” on page 1-17
“Listen for X_TRADER Price Updates” on page 4-2
“Listen for X_TRADER Price Market Depth Updates” on page 4-4
“Submit X_TRADER Orders” on page 4-8

Output Arguments

X — X_TRADER connection

connection object

5-132

xtrdr

X_TRADER connection, returned as a connection object for an X_TRADER session.

Limitations

You should only create one X_TRADER connection per MATLAB session. To create a
new X_TRADER connection, start a new MATLAB session.

More About

“Workflows for Trading Technologies X_TRADER” on page 2-4
X_TRADER API

See Also

close

Introduced in R2013a

5-133

https://developer.tradingtechnologies.com/x_trader-api

5 Functions — Alphabetical List
P

close

Close X_TRADER connection

Syntax

close(X)

Description

close(X) closes the X_TRADER connection X.

Examples

Close X_TRADER Connection
close(X)

“Create an Order Using X_TRADER” on page 1-17

“Lasten for X_TRADER Price Updates” on page 4-2

“Listen for X_TRADER Price Market Depth Updates” on page 4-4
“Submit X_TRADER Orders” on page 4-8

Input Arguments

X — X_TRADER connection

connection object

X_TRADER connection, specified as a connection object created using xtrdr.

More About

“Workflows for Trading Technologies X_TRADER” on page 2-4

5-134

close

X_TRADER API

See Also

xtrdr

Introduced in R2013a

5-135

https://developer.tradingtechnologies.com/x_trader-api

5 Functions — Alphabetical List
P

5-136

createlnstrument

Create instrument for X_TRADER

Syntax

createlnstrument(c,s)
createlnstrument(c,Name,Value)

Description

createlnstrument(c,s) creates the X_TRADER instrument defined by the structure
s with fields corresponding to valid X_TRADER API options. For details, see the
Trading Technologies X TRADER API Programming Tutorial or X_TRADER API Class
Reference.

createlnstrument(c,Name,Value) creates the instrument using one or more
Name,Value pair arguments with names and values corresponding to valid X_TRADER
API options. For details, see the Trading Technologies X TRADER API Programming
Tutorial or X TRADER API Class Reference.

Examples

Create an X_TRADER Instrument Using an Input Structure

The instruments used in these examples continually expire. To ensure you use a current
instrument, see the Market Explorer in X_TRADER Pro.

Create the X_TRADER connection.
c = xtrdr;

Define an input structure s with fields corresponding to valid X_TRADER API options.
For example, create the input structure for Euro-Bobl Futures.

s = [1;
s.Exchange = "Eurex”;
s.Product = "0GBM";

createlnstrument

s.ProdType = "Option~;
s.Contract = "Janl2 P12300°;
s.Alias = "Testlnstrument3”;
S

S =

Exchange: “Eurex”
Product: "OGBM*®
ProdType: "Option*
Contract: "Janl2 P12300*
Alias: "Testlnstrument3*®

Requirement: Restart the MATLAB session before reusing an "Alias” setting.

Create an X_TRADER instrument.
createlnstrument(c,s)

Close the connection.

close(c)

Create an X_TRADER Instrument Using Name-Value Pairs
Create the X_TRADER connection.

c = xtrdr;

Create an X_TRADER instrument for Euro-Bobl Futures using name-value pair
arguments corresponding to valid X_TRADER API options.

createlnstrument(c, "Exchange”, "Eurex”, "Product”, "0OGBM", . . .
"ProdType*®, "Option~”, "Contract”, "Janl2 P12300", ...
"Alias”, "TestInstrument3*)

Close the connection.

close(c)

Retrieve Data Using Multiple X_TRADER Instruments

Create the X_TRADER connection.

5-137

5 Functions — Alphabetical List
P

5-138

c = xtrdr;

Create an X_TRADER instrument for Euro-Bobl Futures using name-value pair
arguments corresponding to valid X_TRADER API options.

createlnstrument(c, "Exchange®, "Eurex”, "Product”, "OGBM", . . .
"ProdType®, "Option®, "Contract”, "Junl4 P127%,.._.
"Alias”, "PricelnstrumentEurex®)

Create another X_TRADER instrument for CAISO NP15 EZ Gen Hub 5 MW Peak
Calendar-Day Real-Time LMP Futures using name-value pair arguments corresponding
to valid X_TRADER API options. This contract expires in April 2014.

createlnstrument(c, "Exchange®, "CME", "Product®, "2F", ...
"ProdType*, "Future”, “"Contract”, "Aprl4=, ...
"Alias”, "PricelnstrumentCMEAprl4-)

Create another X_TRADER instrument for CAISO NP15 EZ Gen Hub 5 MW Peak
Calendar-Day Real-Time LMP Futures using name-value pair arguments corresponding
to valid X_TRADER API options. This contract expires in October 2014.

createlnstrument(c, "Exchange®, "CME", "Product®,"2F", ...

"ProdType”, "Future”, "Contract”,"0Octl4", ...
*Alias”, "PricelnstrumentCMEOct14%)

Retrieve the exchange and product identifier for all three X_TRADER instruments.

d = getData(c,{"Exchange”, "Product®})

d =
Exchange: {3x1 cell}
Product: {3x1 cell}

d is a structure containing the Exchange and Product fields. The fields are cell arrays.

Display the Exchange field.
d.Exchange

ans =
"Eurex”
"CME*
"CME*

createlnstrument

The Exchange field contains the exchange names Eurex and CME for the three
X_TRADER instruments.

Close the connection.

close(c)

. “Create an Order Using X_TRADER” on page 1-17
. “Listen for X_TRADER Price Updates” on page 4-2

. “Listen for X_TRADER Price Market Depth Updates” on page 4-4
. “Submit X_TRADER Orders” on page 4-8

Input Arguments
c — X _TRADER connection

connection object
X_TRADER connection, specified as a connection object created using xtrdr.

s — X_TRADER input structure

structure

X_TRADER input structure, specified using fields corresponding to valid X_TRADER
API options. For details, see the Trading Technologies X TRADER API Programming
Tutorial or X_TRADER API Class Reference.

Cavution: If the symbols for the exchange are entered incorrectly or the exchange server is
down, an error appears. For example, if the exchange is “CME” and the CME exchange
server 1s down, then this error appears: The price server for the Exchange CME is down.
Unable to create instrument.

Example: s = [];

-.Exchange = "Eurex”;
-Product = "0GBM";
-.ProdType = "Option~;
-Contract = "Janl2 P12300";
-Alias = "Testlnstrument3~;

nwouonounon

Data Types: struct

5-139

5 Functions — Alphabetical List
P

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (*). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example:
createlnstrument(X, "Exchange”®, "Eurex”, "Product®, "0GBM", "ProdType*, "Option~, "Cc
P12300", "Alias", "Testinstrument3®)

"Propertyl” — Valid X_TRADER API options

character vector

Valid X_TRADER API options, specified as a character vector using information in the
Trading Technologies X_TRADER API Programming Tutorial or X_TRADER API Class
Reference.

Requirements:

* When using the "Alias”™ name-value pair argument, ensure that every "Alias”
name is unique across all X_TRADER instruments.

* Restart the MATLAB session before reusing an "Alias”™ name.

Otherwise, createlnstrument returns an error.

Data Types: char

"Property2" — Valid X_TRADER API options
character vector

Valid X_TRADER API options, specified as a character vector using information in the
Trading Technologies X TRADER API Programming Tutorial or X TRADER API Class
Reference.

Data Types: char

More About

. “Workflows for Trading Technologies X_TRADER” on page 2-4

5-140

createlnstrument

. X_TRADER API

See Also

createNotifier | createOrderProfile | createOrderSet | xtrdr

Introduced in R2013a

5-141

https://developer.tradingtechnologies.com/x_trader-api

5 Functions — Alphabetical List
P

5-142

createNotifier

Create instrument notifier for X TRADER

Syntax

createNotifier(X,S)
createNotifier(X,Name,Value)

Description

createNotifier(X,S) creates the xtrdr instrument notifier defined by the structure
S with fields corresponding to valid X_TRADER API options. For details, see the
Trading Technologies X TRADER API Programming Tutorial or X_TRADER API Class
Reference.

createNotifier(X,Name,Value) creates the instrument notifier using X_ TRADER
API options specified by one or more Name,Value pair arguments with names and
values corresponding to valid X_TRADER API options. For details, see the Trading
Technologies X TRADER API Programming Tutorial or X TRADER API Class
Reference.

Examples

Create an X_TRADER Instrument Notifier Using an Input Structure

Start X_TRADER.
X = xtrdr;

Define an input structure, S, with fields corresponding to valid X_TRADER API options.

S =1;

S.Instrument = [];
S.UpdateFilter = °~;
S.EnablePriceUpdates = -1;

createNofifier

S.EnableDepthUpdates = O;
S.DebugLoglLevel = 3;
S.EnableOrderSetUpdates = -1;
S.PricelList = [];
S.DeliverAllPriceUpdates = 0O;
S

S =

Instrument: []
UpdateFilter: °*
EnablePriceUpdates: -1
EnableDepthUpdates: O
DebugLogLevel: 3
EnableOrderSetUpdates: -1
PriceList: []
DeliverAllPriceUpdates: 0O

Create an xtrdr instrument notifier.

createNotifier(X,S)

Close the connection.

close(X)

Create an X_TRADER Instrument Notifier Using Name-Value Pairs
Start X_ TRADER.

X = xtrdr;

Create an xtrdr instrument using name-value pairs corresponding to valid X_TRADER
API options.

createNotifier(X, " Instrument®,[], "UpdateFilter®," ", ..
"EnablePriceUpdates®,-1, "EnableDepthUpdates”,0, - ..
"DebuglLogLevel*® ,3, "EnableOrderSetUpdates” ,-1, ...
"PricelList",[], "DeliverAllPriceUpdates”,0)

Close the connection.
close(X)

. “Listen for X_TRADER Price Updates” on page 4-2

5-143

5 Functions — Alphabetical List
P

. “Listen for X_TRADER Price Market Depth Updates” on page 4-4
. “Submit X_TRADER Orders” on page 4-8

Input Arguments

X — X_TRADER connection

connection object
X_TRADER connection, specified as a connection object created using xtrdr.

S — xtrdr input structure with fields
structure

Xtrdr input structure, specified with fields corresponding to valid X_TRADER API
options. For details, see the Trading Technologies X TRADER API Programming
Tutorial or X_TRADER API Class Reference.

Example: S = [];

S.Exchange = "Eurex”;
S._.Product = "0GBM";
S.ProdType = “Option~;
S.Contract = "Janl2 P12300°;
S_Alias = "Testlnstrument3-;

Data Types: struct

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: createNotifier(X, " Instrument”,
[1. UpdateFilter®,"", "EnablePriceUpdates”,-1, "EnableDepthUpdates”,0, "DebuglLogL
[1."DeliverAllPriceUpdates®,0)

"Propertyl” — Valid X_TRADER API options
character vector

5-144

createNofifier

Valid X_TRADER API options, specified as a character vector using the details described
in Trading Technologies X TRADER API Programming Tutorial or X TRADER API
Class Reference.

Example: createNotifier(X, "Instrument”,
[1. UpdateFilter®," ", "EnablePriceUpdates”,-1, "EnableDepthUpdates*®,0, "DebuglLogl
[1.DeliverAllPriceUpdates®,0)

Data Types: char

"Property2" — Valid X_TRADER API options

character vector

Valid X_TRADER API options, specified as a character vector using the details described
in Trading Technologies X TRADER API Programming Tutorial or X TRADER API
Class Reference.

Example: createNotifier(X, "Instrument”,
[1,UpdateFilter®," ", "EnablePriceUpdates”,-1, "EnableDepthUpdates*®,0, "DebuglLogl
[1.“DeliverAllPriceUpdates®,b0)

Data Types: char

More About

. “Workflows for Trading Technologies X_TRADER” on page 2-4
. X_TRADER API

See Also

createlnstrument | createOrderProfile | createOrderSet | xtrdr

Introduced in R2013a

5-145

https://developer.tradingtechnologies.com/x_trader-api

5 Functions — Alphabetical List
P

5-146

createOrderProfile

Create order profile for X_TRADER

Syntax
P = createOrderProfile(X,S)
P = createOrderProfile(X,Name,Value)

Description

P = createOrderProfile(X,S) creates an order profile defined by the structure

S with fields corresponding to valid X_TRADER API options. For details, see the
Trading Technologies X TRADER API Programming Tutorial or X_TRADER API Class
Reference.

P = createOrderProfile(X,Name,Value) creates an order profile using X_TRADER
API options specified by one or more Name,Value pair arguments with names and
values corresponding to valid X_TRADER API options. For details, see the Trading
Technologies X TRADER API Programming Tutorial or X TRADER API Class
Reference.

Examples

Create an Order Profile Using an Input Structure
Start X_TRADER.
X = xtrdr;

Define an input structure, S, with fields corresponding to valid X_TRADER API options.

S =10:

S.Instrument = [];
S_.Customer = °°;
S.Alias = "";
S.ReadProperties = "b";
S_WriteProperties = "b";

createOrderProfile

S.Customers = {"<Default>"};
S_.RoundOption = 2;
S.CustomerDefaults = [];

S

S =

Instrument: []

Customer: **

Alias:
ReadProperties: "b*
WriteProperties: "b*

Customers: {"<Default>"}

RoundOption: 2

CustomerDefaults: []

Create an order profile.
P = createOrderProfile(X,S);
Close the connection.

close(X)
Create an Order Profile Using Name-Value Pairs

Start X_TRADER.
X = xtrdr;

Create an order profile using name-value pairs corresponding to valid X_TRADER API

options.

createOrderProfile(X, " Instrument®,[], "Customer®,"", ...
"Alias","","ReadProperties”®,"b",...
"WriteProperties®,"b", "Customers”,{"<Default>"}, ...
"RoundOption®,2, "CustomerDefaults”,[])

Close the connection.
close(X)

. “Create an Order Using X_TRADER” on page 1-17
. “Listen for X_TRADER Price Updates” on page 4-2
. “Listen for X_TRADER Price Market Depth Updates” on page 4-4

5-147

5 Functions — Alphabetical List
P

. “Submit X_TRADER Orders” on page 4-8

Input Arguments

X — X_TRADER connection

connection object
X_TRADER connection, specified as a connection object created using xtrdr.

S — xtrdr input structure with fields
structure

xtrdr input structure, specified with fields corresponding to valid X_TRADER API
options. For details, see the Trading Technologies X TRADER API Programming
Tutorial or X_ TRADER API Class Reference.

Example: S = [];

S_Exchange = "Eurex"”;
S.Product = "0OGBM";
S.ProdType = “Option-;
S.Contract = "Janl2 P12300°;
S.Alias = "Testlnstrument3-;

Data Types: struct

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (*). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: createOrderProfile(X, " Instrument”,
[1, "Customer*®, "<Default>","Alias”","", "RoundOption®,2, "CustomerDefaults")

"Propertyl” — Valid X_TRADER API options

character vector

Valid X_TRADER API options, specified as a character vector using the details described
in Trading Technologies X TRADER API Programming Tutorial or X TRADER API
Class Reference.

5-148

createOrderProfile

Example: createOrderProfile(X, " Instrument”,
[1, "Customer*®, "<Default>","Alias","", "RoundOption®,2, "CustomerDefaults®)

Data Types: char

"Property2" — Valid X_TRADER API options

character vector

Valid X_TRADER API options, specified as a character vector using the details described

in Trading Technologies X TRADER API Programming Tutorial or X TRADER API
Class Reference.

Example: createOrderProfile(X, " Instrument”,
[1, "Customer*®, "<Default>","Alias","", "RoundOption®,2, "CustomerDefaults")

Data Types: char

Output Arguments

P — Order profile

structure

Order profile, returned as a structure.

More About

. “Workflows for Trading Technologies X_TRADER” on page 2-4
. X_TRADER API

See Also

createlnstrument | createNotifier | createOrderSet | xtrdr

Introduced in R2013a

5-149

https://developer.tradingtechnologies.com/x_trader-api

5 Functions — Alphabetical List
P

5-150

createOrderSet

Create order set for X TRADER

Syntax

createOrderSet(X)
createOrderSet(X,S)
createOrderSet(X,Name,Value)

Description

createOrderSet(X) creates an Xtrdr order set with empty properties. You can

set the properties individually using X_TRADER API options. For details, see the
Trading Technologies X TRADER API Programming Tutorial or X_TRADER API Class
Reference.

createOrderSet(X,S) creates an xtrdr order set defined by the structure S
with fields corresponding to X_TRADER API options. For details, see the Trading
Technologies X TRADER API Programming Tutorial or X TRADER API Class
Reference.

createOrderSet(X,Name,Value) creates an order set using X_TRADER API
options specified by one or more Name, Value pair arguments with names and values
corresponding to X_TRADER API options. For details, see the Trading Technologies
X _TRADER API Programming Tutorial or X_TRADER API Class Reference.

Examples

Create an Empty Order Set
Start X_TRADER.
X = xtrdr;

Create an order set without any properties.

createOrderSet

createOrderSet(X)

Close the connection.

close(X)
Create an Order Set Using an Input Structure

Start X_TRADER.
X = xtrdr;

Define an input structure, S, with fields corresponding to X_TRADER API options.

= [1;
.Count = O;
_Alias = "7;
-ReadProperties = "b";
WriteProperties = "b";
-EnableOrderSetUpdates
.EnableOrderFillData =
.EnableOrderSend = 0;
.EnableOrderAutoDelete = O;
-QuotingOrderProfile = [];

-DebugLogLevel = 3;

-QuoteWithCancelReplace = 0;
-EnableOrderUpdateData = O;
-EnableFillCaching = 0O;

-AvgOpenPriceMode = “NONE®;
-EnableOrderRejectData = O;
-OrderStatusNotifyMode = “ORD_NOTIFY_NONE";

ol
|
[AEY

NDUOLOLLOLOLOLOOLOOOOLOOLnnnnn

Create an order set.

createOrderSet(X,S)

Close the connection.

close(X)

Create an Order Set Using Name-Value Pair Arguments

Start X_TRADER.

X = xtrdr;

5-151

5 Functions — Alphabetical List
P

Create an order set using name-value pair arguments corresponding to X_TRADER API
options.

createOrderSet(X, "Count”,0, "Alias"," ", "ReadProperties”™,"b", ...
"WriteProperties™,"b", "EnableOrderSetUpdates”,-1,...
"EnableOrderFillData",0, "EnableOrderSend”,0, . . .
"EnableOrderAutoDelete”,0, "QuotingOrderProfile”,[1,---
"DebuglLoglLevel, 3, "QuoteWithCancelReplace”,0, . . .
"EnableOrderUpdateData”,0, "EnableFillCaching”,0, ...
"AvgOpenPriceMode”, "NONE", "EnableOrderRejectData”,0, - . .
"OrderStatusNotifyMode™, "ORD_NOTIFY_NONE™)

Close the connection.
close(X)

. “Create an Order Using X_TRADER” on page 1-17

. “Listen for X_TRADER Price Updates” on page 4-2

. “Listen for X_TRADER Price Market Depth Updates” on page 4-4
. “Submit X_TRADER Orders” on page 4-8

Input Arguments

X — X_TRADER connection

connection object
X_TRADER connection, specified as a connection object created using xtrdr.

S — X_TRADER API properties

structure

X_TRADER API properties, specified as a structure where the field names match the
X_TRADER API properties. For details, see the Trading Technologies X TRADER API
Programming Tutorial or X_TRADER API Class Reference.

Example: S = [];

S._.Exchange = "Eurex”;
S.Product = "0GBM";
S.ProdType = "Option~;
S.Contract = "Janl2 P12300"°;
S_Alias = "Testlnstrument3-;

Data Types: struct

5-152

createOrderSet

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example:
createOrderSet(X, "Count®,0, *Alias", " ", "ReadProperties”, "b", "WriteProperties”,
[1°DebugLogLevel, 3, "QuoteWithCancelReplace”,0, "EnableOrderUpdateData”,0, "Enabl

"Propertyl® — X_TRADER API options
character vector

X_TRADER API options, specified as a character vector using the details described in
Trading Technologies X TRADER API Programming Tutorial or X_TRADER API Class
Reference.

Data Types: char

"Property2" — X_TRADER API options
character vector

X_TRADER API options, specified as a character vector using the details described in
Trading Technologies X TRADER API Programming Tutorial or X_TRADER API Class
Reference.

Data Types: char

More About

. “Workflows for Trading Technologies X_TRADER” on page 2-4
. X_TRADER API

See Also

createlnstrument | createNotifier | createOrderProfile | xtrdr

Introduced in R2013a

5-153

https://developer.tradingtechnologies.com/x_trader-api

5 Functions — Alphabetical List
P

5-154

getData

Obtain current X_TRADER data

Syntax

D
D

getData(X,S,F)
getData(X,F)

Description

D = getData(X,S,F) returns data for the fields F for the xtrdr instrument object,

S, with fields corresponding to valid X_TRADER API options. For details, see the
Trading Technologies X TRADER API Programming Tutorial or X_TRADER API Class
Reference.

D = getData(X,F) returns data for the fields F for all instruments associated with the
Xtrdr session object, X.

Examples

Return Exchange and Last Price for an Instrument

Return the exchange and last price fields for the instrument defined in
X. Instrument(l).

D

getData(X,X. Instrument(l),{"Exchange”,"Last"});
D =

Exchange: {"CME"}
Last: {"45%}

Return Exchange and Last Price for an Alias

Return the exchange and last price fields for the instrument defined by the alias
Pricelnstrumentl.

getData

lw)
1l

getData(X, "Pricelnstrumentl” ,{"Exchange”, "Last"});

Exchange: {"CME"}
Last: {"45%}

Return Exchange and Last Price for All Session Instruments

Return the exchange and last price fields for all instruments associated with the xtrdr
session object, X.

D = getData(X,{"Exchange”,"Last"});
D =

Exchange: {2x1 cell}
Last: {2x1 cell}

. “Listen for X_TRADER Price Updates” on page 4-2
. “Listen for X_TRADER Price Market Depth Updates” on page 4-4
. “Submit X_TRADER Orders” on page 4-8

Input Arguments

X — X_TRADER connection

connection object
X_TRADER connection, specified as a connection object created using xtrdr.

S — X_TRADER instrument

instrument object

X_TRADER instrument, specified as an instrument object created using
createlnstrument or aliases with fields corresponding to valid X_TRADER API
options. For details, see the Trading Technologies X TRADER API Programming
Tutorial or X_TRADER API Class Reference.

Example: x. Instrument(1)

F — Fields for the instrument object
character vector | cell array of character vectors

5-155

5 Functions — Alphabetical List
P

Fields for the instrument object or aliases, S, specified as a character vector or cell array
of character vectors. F without a corresponding S are fields for all instruments associated
with the Xtrdr session object, X.

Example: {"Exchange”, "Last"}

Data Types: char | cell

Output Arguments

D — X_TRADER data

character vectors

X_TRADER data, returned as character vectors. For missing data, D contains a NaN.

More About

. “Workflows for Trading Technologies X_TRADER” on page 2-4
. X_TRADER API

See Also

createlnstrument | xtrdr

Introduced in R2013a

5-156

https://developer.tradingtechnologies.com/x_trader-api

cq9

cqg

Create CQG connection object

Syntax

c = cqg

Description

Cc = cqg creates a CQG connection object c.

Examples

Create the CQG Connection Object
Create the CQG connection object using cqg.

C = Cqg
c =
cqg with properties:

Handle: [1x1 COM.CQG_CQGCEL_4]
APIConfig: [1x1 Interface.CQG_4.0_Type_Library_-_Revised_API_1CQGAPIConfig]

CQG connection object properties reflect the CQG ActiveX object Handle and the API
configuration type library specification APIConfig.

Display the Hand le property of c.
c.Handle
ans =

COM.CQG_CQGCEL_4

Close the CQG connection.

5-157

5 Functions — Alphabetical List
P

5-158

close(c)

. “Create an Order Using CQG” on page 1-12

. “Create CQG Orders” on page 4-45

. “Request CQG Historical Data” on page 4-51

. “Request CQG Intraday Tick Data” on page 4-54
. “Request CQG Real-Time Data” on page 4-58

Output Arguments

¢ — CQG connection
connection object

CQG connection, returned as a CQG connection object. The properties of this object are
as follows:

Property Description
Handle CQG ActiveX object
API1Config API configuration type library specification

These properties are determined by the CQG API.

More About

. “Workflow for CQG” on page 2-8
. “Installation” on page 1-3
. CQG API Reference Guide

See Also

close | startUp

Introduced in R2013b

http://partners.cqg.com/api-resources/technical-documentation

close

close

Close CQG connection

Syntax

close(c)

Description

close(c) closes CQG connection C.

Examples

Close the CQG Connection

Create the CQG connection object C using cqg.
Cc = cq9;

Create the CQG connection using startup.
startUp(c)

Close the connection using the CQG connection object C.

close(c)

“Create an Order Using CQG” on page 1-12
“Create CQG Orders” on page 4-45

“Request CQG Historical Data” on page 4-51
“Request CQG Intraday Tick Data” on page 4-54
“Request CQG Real-Time Data” on page 4-58

Input Arguments

¢ — CQG connection
connection object

5-159

5 Functions — Alphabetical List
P

CQG connection, specified as a CQG connection object created using cqg.

More About

“Workflow for CQG” on page 2-8
CQG API Reference Guide

See Also

cqg | shutDown

Introduced in R2013b

5-160

http://partners.cqg.com/api-resources/technical-documentation

createOrder

createOrder

Create CQG order

Syntax

0 = createOrder(c,s,1,account,quantity)

0 = createOrder(c,s,2,account,quantity, limitprice)

0 = createOrder(c,s,3,account,quantity,stopprice)

0 = createOrder(c,s,4,account,quantity, limitprice,stopprice)
Description

0 = createOrder(c,s,1l,account,quantity) creates a CQGOrder object o for
a market order of quantity shares of CQG instrument s using the CQGAccount
credentials object account over the CQG connection C.

0 = createOrder(c,s,2,account,quantity, limitprice) creates a limit order
using a CQG limit price limitprice.

0 = createOrder(c,s,3,account,quantity,stopprice) creates a stop order
using a CQG stop price stopprice.

0 = createOrder(c,s,4,account,quantity, limitprice,stopprice) creates a
stop limit order using CQG limit and stop prices, limitprice and stopprice.

Examples

Create and Place a Market Order Using a CQGInstrument Obiject

To create and place a market order for shares of an instrument with the CQG Trader
Com API using a CQGInstrument object to specify the instrument, create the connection
C using cqg and startUp. Register an event handler for tracking events associated

with the connection status. Set up the API configuration properties. Then, register event
handlers for tracking events associated with the instrument subscription, order and

5-161

5 Functions — Alphabetical List
P

5-162

account. Subscribe to the instrument and create the CQGInstrument object cqglnst.
Then, set up the account credentials accountHandle. For an example demonstrating
these activities, see “Create CQG Orders” on page 4-45. See CQG API Reference Guide
to learn more about event handlers, API configuration properties, and CQGInstrument
object.

Create a market order that buys one share of the subscribed security cqglnst using the
account credentials accountHandle.

quantity = 1;

oMarket = createOrder(c,cqglnst,1l,accountHandle,quantity);
oMarket.Place

ans =
OrderChanged

The CQGOrder object oMarket contains the order. The CQG API executes the market
order using the CQG API function Place. After execution, the order status changes.

Close the CQG connection.

shutDown(c)
Create and Place a Market Order Using a CQG Instrument Character Vector

To create and place a market order for shares of an instrument with the CQG Trader
Com API, create the connection c using cqg and startUp. Register an event handler
for tracking events associated with connection status. Set up the API configuration
properties. Then, register event handlers for tracking events associated with instrument
subscription, order, and account. Subscribe to the instrument. Then, set up the account
credentials accountHandle. For an example demonstrating these activities, see
“Create CQG Orders” on page 4-45. To learn more about the event handlers and the API
configuration properties, see the CQG API Reference Guide.

Create a market order that buys one share of the previously subscribed security "EZC*"
using the defined account credentials accountHandle.

cqglinstrumentName = "EZC";
quantity = 1;

oMarket = createOrder(c,cqglnstrumentName,1l,accountHandle,

createOrder

quantity);
oMarket.Place

ans =
OrderChanged

The CQGOrder object oMarket contains the order. The CQG API executes the market
order using the CQG API function Place. After execution, the order status changes.

Close the CQG connection.

shutDown(c)
Create and Place a Limit Order

To create and place a limit order for shares of an instrument with the CQG Trader Com
API using a CQGInstrument object to specify the instrument, create the connection

C using cqg and startUp. Register an event handler for tracking events associated
with connection status. Set up the API configuration properties. Then, register event
handlers for tracking events associated with instrument subscription, order and account.
Subscribe to the instrument and create the CQGInstrument object cqglnst. Then,

set up the account credentials accountHandle. For an example demonstrating these
activities, see “Create CQG Orders” on page 4-45. See CQG API Reference Guide

to learn more about the event handlers, the API configuration properties, and the
CQGInstrument object.

To create a limit order, you can use the bid price. Extract the CQG bid object qtBid from
the previously defined CQGInstrument object cqglnst.

qtBid = cqglnst._get("Bid");

Create a limit order that buys one share of the previously subscribed security cqglnst
using the previously defined account credentials accountHandle and qtBid for the
limit price.

quantity = 1;
limitprice = qtBid.get("Price”);
t = createOrder(c,cqglnst,2,accountHandle,quantity,
imitprice);
t.Place

5-163

5 Functions — Alphabetical List
P

5-164

OrderChanged

The CQGOrder object oLimit contains the order. The CQG API executes the limit order
using the CQG API function Place. After execution, the order status changes.

Close the CQG connection.

shutbDown(c)
Create and Place a Stop Order

To create and place a stop order for shares of an instrument with the CQG Trader Com
API using a CQGInstrument object to specify the instrument, create the connection

C using cqg and startUp. Register an event handler for tracking events associated
with connection status. Set up the API configuration properties. Then, register event
handlers for tracking events associated with instrument subscription, order and account.
Subscribe to the instrument and create the CQGInstrument object cqglnst. Then,

set up the account credentials accountHandle. For an example demonstrating these
activities, see “Create CQG Orders” on page 4-45. See CQG API Reference Guide

to learn more about the event handlers, the API configuration properties, and the
CQGInstrument object.

To create a stop order, you can use the trade price. Extract the CQG trade object
qtTrade from the previously defined CQGlnstrument object cqglnst.

qtTrade = cqglnst.get("Trade®);

Create a stop order that buys one share of the previously subscribed security cqglnst
using the previously defined account credentials accountHandle and qtTrade for the
stop price.

quantity = 1;
stopprice = qtTrade.get("Price”);

oStop = createOrder(c,cqglnst,3,accountHandle,quantity,
stopprice);
oStop.-Place

ans =
OrderChanged

The CQGOrder object 0Stop contains the order. The CQG API executes the stop order
using the CQG API function Place. After execution, the order status changes.

createOrder

Close the CQG connection.

shutDown(c)
Create and Place a Stop Limit Order

To create and place a stop limit order for shares of an instrument with the CQG Trader
Com API using a CQGInstrument object to specify the instrument, create the connection
C using cqg and startUp. Register an event handler for tracking events associated

with connection status. Set up the API configuration properties. Then, register event
handlers for tracking events associated with instrument subscription, order and account.
Subscribe to the instrument and create the CQGInstrument object cqglnst. Then,

set up the account credentials accountHandle. For an example demonstrating these
activities, see “Create CQG Orders” on page 4-45. See CQG API Reference Guide

to learn more about the event handlers, the API configuration properties, and the
CQGInstrument object.

To create a stop limit order, you can use the bid and trade prices. Extract the CQG
bid object qtBid and the CQG trade object qtTrade from the previously defined
CQGInstrument object cqglnst.

gtBid = cqglnst.get("Bid");
gtTrade = cqglnst.get("Trade");

Create a stop limit order that buys one share of the subscribed security cqglnst using
the defined account credentials accountHandle and qtBid for the limit price and
gtTrade for the stop price.

quantity = 1;

limitprice = qtBid.get("Price");

stopprice = qtTrade.get("Price”);

oStopLimit = createOrder(c,cqglnst,4,accountHandle,quantity,
limitprice,stopprice);

oStopLimit_Place

ans =
OrderChanged

The CQGOrder object oStopLimit contains the order. The CQG API executes the stop
limit order using the CQG API function Place. After execution, the order status changes.

Close the CQG connection.

5-165

5 Functions — Alphabetical List
P

5-166

shutDown(c)

. “Create an Order Using CQG” on page 1-12

. “Create CQG Orders” on page 4-45

. “Request CQG Historical Data” on page 4-51

. “Request CQG Intraday Tick Data” on page 4-54
. “Request CQG Real-Time Data” on page 4-58

Input Arguments

¢ — CQG connection
connection object

CQG connection, specified as a CQG connection object created using cqg.

s — CQG instrument name
character vector | CQGInstrument object

CQG instrument name, specified as a character vector or a CQGInstrument object,
denoting the instrument or security for the order transaction. For more information
about creating a CQGInstrument object, see the CQG API Reference Guide.

Data Types: char

account — CQG account credentials
CQGAccount object

CQG account credentials, specified as a CQGAccount object. This object encapsulates
all data pertinent to your account. For more information about creating a CQGAccount
object, see CQG API Reference Guide.

quantity — CQG order quantity

scalar

CQG order quantity, specified as a scalar denoting the number of shares to order. A
positive number denotes a buy and a negative number denotes a sell.

Data Types: double

limitprice — CQG limit price
double

createOrder

CQG limit price, specified as a double denoting the limit order price.

Data Types: double

stopprice — CQG stop price
double

CQG stop price, specified as a double denoting the stop order price.
Data Types: double

Output Arguments

o — CQG order
CQGOrder object

CQG order, returned as a CQGOrder object. This object encapsulates all data necessary

to execute a CQG order. For more information about creating a CQGOrder object, see
CQG API Reference Guide.

More About

“Workflow for CQG” on page 2-8
CQG API Reference Guide

See Also

cqg | history | realtime | timeseries

Introduced in R2013b

5-167

http://partners.cqg.com/api-resources/technical-documentation

5 Functions — Alphabetical List
P

5-168

history

Request CQG historical data

Syntax

history(c,s,startdate,enddate,period)
history(c,s,startdate,enddate,period,Xx)

Description

history(c,s,startdate,enddate,period) requests CQG historical data
asynchronously with bar size period between startdate and enddate for CQG
instrument name s with CQG connection C.

history(c,s,startdate,enddate,period,x) requests CQG historical data
asynchronously with additional request properties X.

Examples

Request CQG Historical Data

To request daily historical data for an instrument, create the connection ¢ using cqg
and startUp. Register an event handler for tracking events associated with connection
status. Set up the API configuration properties. Then, register an event handler for
tracking events associated with building and initializing the output data structure. For
an example demonstrating these activities, see “Request CQG Historical Data” on page
4-51. See CQG API Reference Guide to learn more about event handlers and the API
configuration properties.

Request historical daily data for instrument XYZ.XYZ for the last 10 days. XYZ_.XYZ is a
sample instrument name. To request historical data for your instrument, substitute the
symbol name in instrument.

instrument = {"Close(XYZ_XYZ)", "Open(XYZ_XYZ)"};
startdate = floor(now) - 10;

history

enddate = floor(now);
period = “hpDaily”;

history(c, instrument,startdate,enddate,period)
pause(1)

MATLAB writes variable cqgHistoryData to the Workspace browser.

Display cqgHistoryData.

cqgHistoryData

cqgHistoryData =
1.0e+05 *
7.3533 0.0063 0.0063
7.3533 0.0064 0.0064
7.3533 0.0065 0.0065
7.3534 0.0065 0.0065
7.3534 0.0066 0.0066
7.3534 0.0065 0.0065
7.3534 0.0066 0.0066
7.3534 0.0066 0.0066
7.3534 0.0064 0.0064

Each row in cqgHistoryData represents data for 1 day. The columns in
cqgHistoryData show the numerical representation of the timestamp, the close price,
and the open price for the instrument during the day.

Close the CQG connection.

close(c)
Request CQG Historical Data with Additional Request Properties

To request daily historical data for an instrument with an additional property, create

the connection ¢ using cqg and startUp. Register an event handler for tracking events
associated with connection status. Set up the API configuration properties. Then, register
an event handler for tracking events associated with building and initializing the output
data structure. For an example demonstrating these activities, see “Request CQG
Historical Data” on page 4-51. See CQG API Reference Guide to learn more about event
handlers and the API configuration properties.

Pass an additional optional request property by creating the structure X and setting the
optional property.

5-169

5 Functions — Alphabetical List
P

X.UpdatesEnabled = false;
For additional optional properties you can set, see CQG API Reference Guide.

Request historical daily data for instrument XYZ.XYZ for the last 10 days using the
additional optional request property X. XYZ.XYZ is a sample instrument name. To
request historical data for your instrument, substitute the symbol name in instrument.

instrument = {"Close(XYZ.XYZ)","Open(XYZ.XYZ)"};
startdate = floor(now) - 10;

enddate = floor(now);

period = "hpDaily”;

history(c, instrument,startdate,enddate,period,Xx)
pause(1)

MATLAB writes the variable cqgHistoryData to the Workspace browser.

Display cqgHistoryData

cqgHistoryData

cqgHistoryData =
1.0e+05 *
7.3533 0.0063 0.0063
7.3533 0.0064 0.0064
7.3533 0.0065 0.0065
7.3534 0.0065 0.0065
7.3534 0.0066 0.0066
7.3534 0.0065 0.0065
7.3534 0.0066 0.0066
7.3534 0.0066 0.0066
7.3534 0.0064 0.0064

Each row in cqgHistoryData represents data for 1 day. The columns in
cqgHistoryData show the numerical representation of the timestamp, the close price,
and the open price for the instrument during the day.

Close the CQG connection.
close(c)

. “Create CQG Orders” on page 4-45
. “Request CQG Historical Data” on page 4-51

5-170

history

. “Request CQG Intraday Tick Data” on page 4-54
. “Request CQG Real-Time Data” on page 4-58

Input Arguments

¢ — CQG connection
connection object

CQG connection, specified as a CQG connection object created using cqg.

s — CQG instrument name
character vector

CQG instrument name, specified as a character vector identifying the instrument or
security.

Data Types: char

startdate — Start date
date character vector | date scalar

Start date, specified as a starting date character vector or scalar.

Data Types: double | char

enddate — End date
date character vector | date scalar

End date, specified as an ending date character vector or scalar.

Data Types: double | char

period — Bar size
"hpDaily” (default) | "hpWeekly® | "hpMonthly® | "hpQuarterly” |
"hpSemiannual® | "hpYearly"®

Bar size, specified as one of the above values predetermined by the CQG API that
denotes the length of time to collect data.

x — CQG request properties
request properties structure

5-171

5 Functions — Alphabetical List

CQG request properties, specified as a CQG request properties structure. Create this
structure by writing MATLAB code to set additional optional request properties. For
additional optional properties you can set, see CQG API Reference Guide.

Example: x.UpdatesEnabled = false;
Data Types: struct

More About

. “Workflow for CQG” on page 2-8
. CQG API Reference Guide

See Also

cqg | createOrder | realtime | timeseries

Introduced in R2013b

5-172

http://partners.cqg.com/api-resources/technical-documentation

realtime

realtime

Subscribe to CQG instrument

Syntax

realtime(c,s)

Description

realtime(c, s) subscribes to a CQG instrument s using CQG connection c.

Examples

Subscribe to the CQG Instrument

To subscribe to the CQG instrument and get current data, create the connection C

using cqg and startUp. Register an event handler for tracking events associated with
connection status. Set up the API configuration properties. Then, register an event
handler for tracking events associated with instrument subscription. For an example
demonstrating these activities, see “Request CQG Real-Time Data” on page 4-58. See
CQG API Reference Guide to learn more about event handlers and the API configuration
properties.

With the connection established, subscribe to the instrument. The instrument name must
be formatted in the CQG long symbol view. For example, to subscribe to a security tied to
corn, type the following.

instrument = "F.US_EZC";
realtime(c, instrument)

MATLAB writes the structure variable cqgDataEZC to the Workspace browser.

Display cqgDataEZC.

cqgbataEzC(1,1)

5-173

5 Functions — Alphabetical List

ans =
Price: {15x1 cell}
Volume: {15x1 cell}
ServerTimestamp: {15x1 cell}
Timestamp: {15x1 cell}
Type: {15x1 cell}
Name: {15x1 cell}
Isvalid: {15x1 cell}
Instrument: {15x1 cell}
HasVolume: {15x1 cell}

cqgDataEZC returns the current quotes for the security.

Display data in the Price property of cqgDataEZC.
cqgbataEZC(1,1).Price

ans

|
NN DN

.1475e+09]
.1475e+09]
.1475e+09]

660.5000]

b

.1475e+09]
.1475e+09]
.1475e+09]
.1475e+09]
.1475e+09]
.1475e+09]
.1475e+09]

660.5000]
.1475e+09]

| | | |
NNNNNNDN

nlanlreboelonlonlonlonbonlon fon Lanlonlonlon

|
N

Close the CQG connection.
close(c)

. “Create an Order Using CQG” on page 1-12

. “Create CQG Orders” on page 4-45

. “Request CQG Historical Data” on page 4-51

. “Request CQG Intraday Tick Data” on page 4-54
. “Request CQG Real-Time Data” on page 4-58

5-174

realtime

Input Arguments

¢ — CQG connection
connection object

CQG connection, specified as a CQG connection object created using cqg.

s — CQG instrument name
Chal“‘dCtCl‘ vector

CQG instrument name, specified as a character vector identifying the instrument or
security.

Data Types: char

More About

. “Workflow for CQG” on page 2-8
. CQG API Reference Guide

See Also

cqg | createOrder | history | timeseries

Introduced in R2013b

5-175

http://partners.cqg.com/api-resources/technical-documentation

5 Functions — Alphabetical List
P

5-176

shutDown

Close CQG connection

Syntax

shutDown(c)

Description

shutDown(c) closes the CQG connection c.

Examples

Close the CQG Connection

Create the CQG connection object using cqg.

Cc = cq9;

Create the CQG connection using startup.
startUp(c)

Close the CQG connection.

shutbDown(c)

Alternatively, close the CQG connection using close.
close(c)

“Create CQG Orders” on page 4-45

“Request CQG Historical Data” on page 4-51
“Request CQG Intraday Tick Data” on page 4-54
“Request CQG Real-Time Data” on page 4-58

shutDown

Input Arguments

¢ — CQG connection
connection object

CQG connection, specified as a CQG connection object created using cqg.

More About

“Workflow for CQG” on page 2-8
CQG API Reference Guide

See Also

close | cqg | startUp

Introduced in R2013b

5-177

http://partners.cqg.com/api-resources/technical-documentation

5 Functions — Alphabetical List
P

5-178

startUp

Create CQG connection

Syntax

startUp(c)

Description

startUp(c) creates the CQG connection c.

Examples

Create the CQG Connection

Create the CQG connection object using cqg.
c = cq9;

Create the CQG connection.

startUp(c)

Close the CQG connection.

close(c)

“Create an Order Using CQG” on page 1-12
“Create CQG Orders” on page 4-45

“Request CQG Historical Data” on page 4-51
“Request CQG Intraday Tick Data” on page 4-54
“Request CQG Real-Time Data” on page 4-58

Input Arguments

¢ — CQG connection
connection object

startUp

CQG connection, specified as a CQG connection object created using cqg.

More About

“Workflow for CQG” on page 2-8
CQG API Reference Guide

See Also

close | cqg | shutDown

Introduced in R2013b

5-179

http://partners.cqg.com/api-resources/technical-documentation

5 Functions — Alphabetical List
P

5-180

timeseries

Request CQG intraday tick data

Syntax

timeseries(c,s,startdate,enddate)
timeseries(c,s,startdate,enddate, [],x)

timeseries(c,s,startdate,enddate, intraday)
timeseries(c,s,startdate,enddate, intraday,x)

Description

timeseries(c,s,startdate,enddate) requests CQG raw intraday tick data
asynchronously between startdate and enddate for CQG instrument name s with
CQG connection C.

timeseries(c,s,startdate,enddate, [],Xx) requests CQG raw intraday tick data
asynchronously without timed bar data using additional request properties X.

timeseries(c,s,startdate,enddate, intraday) requests CQG timed bar data
asynchronously with the aggregated bar value intraday.

timeseries(c,s,startdate,enddate, intraday, x) requests CQG timed bar data
asynchronously with additional request properties X.

Examples

Request CQG Intraday Tick Data

To request intraday tick data for an instrument, create the connection c using cqg and
startUp. Register an event handler for tracking events associated with connection
status. Set up the API configuration properties. Then, register an event handler for
tracking events associated with building and initializing the output data structure. For
an example demonstrating these activities, see “Request CQG Intraday Tick Data” on
page 4-54. See CQG API Reference Guide to learn more about event handlers and the API
configuration properties.

timeseries

Request intraday tick data for instrument XYZ . XYZ for the last 2 days. XYZ_XYZ is a
sample instrument name. To request intraday tick data for your instrument, substitute
the symbol name in instrument.

instrument = "XYZ_XYZ";
startdate = now - 2;
enddate = now;

timeseries(c, instrument,startdate,enddate)
MATLAB writes the structure variable cqgTickData to the Workspace browser.

Display cqgTickData.
cqgTickData

cqgTickData =
Timestamp: {2x1 cell}
Price: [2x1 double]
Volume: [2x1 double]
PriceType: {2x1 cell}
CorrectionType: {2x1 cell}
SalesConditionLabel: {2x1 cell}
SalesConditionCode: [2x1 double]
Contributorld: {2x1 cell}
ContributorldCode: [2x1 double]
MarketState: {2x1 cell}

cqgTickData returns intraday tick data for the specified instrument.
Display the data in the Timestamp property of cqgTickData.

cqgTickData.Timestamp
ans =
"4/17/2013 2:14:00 PM*
"4/18/2013 2:14:00 PM*
Close the CQG connection.
close(c)

Request CQG Intraday Tick Data with Additional Properties

To request intraday tick data for an instrument with an additional property, create the
connection € using cqg and startUp. Register an event handler for tracking events

5-181

5 Functions — Alphabetical List
P

5-182

associated with connection status. Set up the API configuration properties. Then, register
an event handler for tracking events associated with building and initializing the output
data structure. For an example demonstrating these activities, see “Request CQG
Intraday Tick Data” on page 4-54. See CQG API Reference Guide to learn more about
event handlers and the API configuration properties.

Pass an additional optional request property by creating the structure X, and setting the
optional property. To see only bid tick data, for example, set TickFilter to "tfBid".

X.TickFilter = "tfBid";

TickFilter and SessionsFilter are the only valid additional optional properties for
calling timeseries without a timed bar request. For additional property values you can
set, see CQG API Reference Guide.

Request intraday tick data for instrument XYZ.XYZ for the last 2 days using the
additional optional request property X. XYZ.XYZ is a sample instrument name.
To request intraday tick data for your instrument, substitute the symbol name in
instrument.

instrument = "XYZ_XYZ";
startdate = now - 2;
enddate = now;

timeseries(c, instrument,startdate,enddate,[],x)

MATLAB writes the variable cqgTickData to the Workspace browser.
Display cqgTickData.

cqgTickData

cqgTickData =
Timestamp: {2x1 cell}
Price: [2x1 double]
Volume: [2x1 double]
PriceType: {2x1 cell}
CorrectionType: {2x1 cell}
SalesConditionLabel: {2x1 cell}
SalesConditionCode: [2x1 double]
Contributorld: {2x1 cell}
ContributorldCode: [2x1 double]
MarketState: {2x1 cell}

timeseries

cqgTickData returns intraday tick data for the specified instrument.

Display the data in the Timestamp property of cqgTickData.
cqgTickData.Timestamp

ans =
"4/17/2013 2:14:00 PM*
"4/18/2013 2:14:00 PM*

Close the CQG connection.

close(c)
Request CQG Timed Bar Data

To request timed bar data for an instrument, create the connection ¢ using cqg and
startUp. Register an event handler for tracking events associated with connection
status. Set up the API configuration properties. Then, register an event handler for
tracking events associated with building and initializing the output data structure. For
an example demonstrating these activities, see “Request CQG Intraday Tick Data” on
page 4-54. See CQG API Reference Guide to learn more about event handlers and the API
configuration properties.

Request timed bar data for instrument XYZ . XYZ for the last fraction of a day. XYZ.XYZ
is a sample instrument name. To request timed bar data for your instrument, substitute
the symbol name in instrument.

instrument = "XYZ_XYZ";
startdate = now - .1;
enddate = now;

intraday = 1;

timeseries(c, instrument,startdate,enddate, intraday)
MATLAB writes variable cqgTimedBarData to the Workspace browser.

Display cqgTimedBarData.

cqgTimedBarData

cqggTimedBarData =
1.0e+09 *
0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475

5-183

5 Functions — Alphabetical List
P

5-184

0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475

cqgTimedBarData returns timed bar data for the specified instrument. The columns of
cqgTimedBarData display data corresponding to the timestamp, open price, high price,
low price, close price, mid-price, HLC3, average price, and tick volume.

Close the CQG connection.
close(c)
Request CQG Timed Bar Data with Additional Properties

To request timed bar data for an instrument with an additional property, create the
connection c using cqg and startUp. Register an event handler for tracking events
associated with connection status. Set up the API configuration properties. Then, register
an event handler for tracking events associated with building and initializing the output
data structure. For an example demonstrating these activities, see “Request CQG
Intraday Tick Data” on page 4-54. See CQG API Reference Guide to learn more about
event handlers and the API configuration properties.

Pass an additional optional request property by creating the structure X, and setting the
optional property.

X.UpdatesEnabled = false;
For additional optional properties you can set, see CQG API Reference Guide.

Request timed bar data for instrument XYZ.XYZ for the last fraction of a day using
the additional optional request property X. XYZ_XYZ is a sample instrument name. To
request timed bar data for your instrument, substitute the symbol name in instrument.

instrument = "XYZ_XYZ";
startdate = now - .1;
enddate = now;

intraday = 1;

timeseries(c, instrument,startdate,enddate, intraday,Xx)
MATLAB writes the variable cqgTimedBarData to the Workspace browser.

Display cqgTimedBarData.

cqgTimedBarData

timeseries

cqggTimedBarData =
1.0e+09 *
0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475

cqgTimedBarData returns timed bar data for the specified instrument. The columns of
cqgTimedBarData display data corresponding to the timestamp, open price, high price,
low price, close price, mid-price, HLC3, average price, and tick volume.

Close the CQG connection.
close(c)

. “Create CQG Orders” on page 4-45

. “Request CQG Historical Data” on page 4-51

. “Request CQG Intraday Tick Data” on page 4-54
. “Request CQG Real-Time Data” on page 4-58

Input Arguments

¢ — CQG connection
connection object

CQG connection, specified as a CQG connection object created using cqg.

s — CQG instrument name
character vector

CQG instrument name, specified as a character vector identifying the instrument or
security.

Data Types: char

startdate — Start date
date character vector | date scalar

Start date, specified as a starting date character vector or scalar.

Data Types: double | char

5-185

5 Functions — Alphabetical List
P

5-186

enddate — End date
date character vector | date scalar

End date, specified as an ending date character vector or scalar.

Data Types: double | char

intraday — Aggregated bar value
scalar | []

Aggregated bar value, specified as a scalar from 1.0 to 1440.0. If you want to call
timeseries to return intraday tick data with additional properties without timed bar
data, then enter [] for this argument.

Data Types: double

x — CQG request properties
request properties structure

CQG request properties, specified as a CQG request properties structure. Create this
structure by writing MATLAB code to set additional optional request properties. For
additional optional properties you can set, see CQG API Reference Guide.

Example: x.UpdateskEnabled = false;
Data Types: struct

More About

. “Workflow for CQG” on page 2-8
. CQG API Reference Guide

See Also

cqg | createOrder | history | realtime

Introduced in R2013b

http://partners.cqg.com/api-resources/technical-documentation

ibtws

ibtws

Create IB Trader Workstation connection

Syntax
ib = ibtws(host,port)
ib = ibtws(host,port,clientid)

Description

ib = ibtws(host,port) creates a connection to IB Trader Workstation on a machine
with TP address host and port number port. ibtws returns the IB Trader Workstation
connection object ib.

ib = ibtws(host,port,clientid) creates a connection to IB Trader Workstation by
specifying the client identifier clientid.

Examples

Connect to the IB Trader Workstation on the Local Machine

Connect to the IB Trader Workstation on the local machine using port number 7496.
ib = ibtws("",7496)
ib =

ibtws with properties:

Clientld: O
Handle: [1x1 COM.TWS TwsCtrl_1]
Host: ="
Port: 7496

MATLAB returns ib as the connection to the IB Trader Workstation with the Interactive
Brokers ActiveX object, the local host, and the port number that you choose.

5-187

5 Functions — Alphabetical List
P

5-188

Display the Handle property of ib.

ib_Handle

ans =

COM.TWS_TwsCtrl_1

Close the IB Trader Workstation connection.

close(ib)

Connect to the IB Trader Workstation on Another Machine

Note: The IP address for this example does not represent a real Interactive Brokers

machine.

Use IP address 1111.222.333.44 and port number 7496 to connect to the IB Trader
Workstation on another machine.

ib = ibtws("1111.222.333.44",7496)

ib =

ibtws with

Clientld:
Handle:
Host:
Port:

properties:

0

[1x1 COM.TWS TwsCtrl_1]
*1111.222.333.44"

7496

MATLAB returns b as the connection to the IB Trader Workstation with the Interactive
Brokers ActiveX object, the IP address that you choose, and the port number that you

choose.

Display the Hand le property of ib.

ib.Handle

ans =

COM.TWS_TwsCtrl_1

Close the IB Trader Workstation connection.

ibtws

close(ib)
Connect to the IB Trader Workstation Using the Client Identifier
Connect to the IB Trader Workstation on the local machine using client identifier 1.
ib = ibtws("",7496,1)
ib =
ibtws with properties:

Clientld: 1
Handle: [1x1 COM.TWS TwsCtrl_1]
Host: **
Port: 7496

MATLAB returns b as the connection to the IB Trader Workstation with the client
identifier, Interactive Brokers ActiveX object, the local host, and the port number that
you choose.

Display the Clientld property of ib.
ib_.Clientld
ans =

1
Close the IB Trader Workstation connection.
close(ib)

. “Create an Order Using IB Trader Workstation” on page 1-8

. “Create Interactive Brokers Combination Order” on page 4-39
. “Create and Manage an Interactive Brokers Order” on page 4-26
. “Request Interactive Brokers Historical Data” on page 4-32

. “Request Interactive Brokers Real-Time Data” on page 4-35

Input Arguments

host — IP address of machine where IB Trader Workstation is running
" " | character vector

5-189

5 Functions — Alphabetical List

IP address of the machine where IB Trader Workstation is running, specified as either
" * or a character vector. " " specifies the local machine. A character vector specifies the
IP address of another machine.

Data Types: char

port — IB Trader Workstation port number
scalar

IB Trader Workstation port number, specified as a number designating the connection
port of the machine.
Data Types: double

clientid — IB Trader Workstation client identifier
scalar

IB Trader Workstation client identifier, specified as a number designating the client
machine. This number must be unique to the client.

Data Types: double

Output Arguments

ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, returned as an IB Trader Workstation connection
object. The properties of this object are as follows.

Property Description

Clientid Application identifier where the connection originated
Handle Interactive Brokers ActiveX object

Host host argument

Port port argument

The Interactive Brokers API determines these properties.

5-190

ibtws

More About
Tips

* ibBuiltInErrMsg appears in the MATLAB workspace. Check the status of

connection and function execution by displaying the contents of this variable.

ibBui I'tInErrMsg contains messages related to:

+ Connection
Information resulting from executing functions

+ Errors

. “Workflow for Interactive Brokers” on page 2-6

. Interactive Brokers API Reference Guide

See Also

close

Introduced in R2013b

5-191

http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

5-192

close

Close IB Trader Workstation connection

Syntax

close(ib)

Description

close(ib) closes the IB Trader Workstation connection ib.

Examples

Close the IB Trader Workstation Connection

Connect to the IB Trader Workstation on the local machine with port number 7496.
ib = ibtws("",7496);

ibtws creates the IB Trader Workstation connection object ib.

Close the IB Trader Workstation connection using the IB Trader Workstation connection
object ib.

close(ib)

. “Create an Order Using IB Trader Workstation” on page 1-8

. “Create Interactive Brokers Combination Order” on page 4-39

. “Create and Manage an Interactive Brokers Order” on page 4-26
. “Request Interactive Brokers Historical Data” on page 4-32

. “Request Interactive Brokers Real-Time Data” on page 4-35

Input Arguments

ib — IB Trader Workstation connection
connection object

close

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

More About

“Workflow for Interactive Brokers” on page 2-6

. Interactive Brokers API Reference Guide

See Also

ibtws

Introduced in R2013b

5-193

http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

5-194

createOrder

Create IB Trader Workstation order

Syntax

d = createOrder(ib, ibContract, ibOrder, id)
d = createOrder(ib, ibContract, ibOrder, id,eventhandler)
Description

d = createOrder(ib, ibContract, ibOrder, id) creates an IB Trader Workstation
order over the IB Trader Workstation connection ib using the IB Trader Workstation
10rder object 1bOrder with a unique order identifier id to denote the order
information. createOrder uses the IB Trader Workstation 1Contract object
ibContract to signify the instrument for the transaction. createOrder returns the
Interactive Brokers order data d containing data about the completed order.

d = createOrder(ib, ibContract, ibOrder, id,eventhandler) creates an IB
Trader Workstation order using an event handler function eventhandler. Use the
sample event handler 1bExampleEventHandler or write a custom event handler
function.

Examples

Create an Order

To create an order, set up the IB Trader Workstation connection §b using ibtws.

Create an IB Trader Workstation 1Contract object ibContract. An IContract

object is an Interactive Brokers object for containing the data about a security to process
transactions. Then, create an IB Trader Workstation 10rder object ibOrder. An
10rder object is an Interactive Brokers object that contains the order conditions to place
an order. For an example showing how to create these objects, see “Create and Manage
an Interactive Brokers Order” on page 4-26. For details about creating these objects, see
Interactive Brokers API Reference Guide.

http://www.interactivebrokers.com/en/software/api/api.htm

createOrder

Obtain the next valid order identification number id using ib.
id = orderid(ib)
id =

54110686

Execute the order using ib, ibContract, ibOrder, and id. This code assumes a buy
market order for two shares.

d

createOrder(ib, ibContract, ibOrder, id)

d:
STATUS: "Filled"
FILLED: 2
REMAINING: O
AVG_FILL_PRICE: 787.5600
PERM_ID: "1979798454"
PARENT ID: 0
LAST_FILL_PRICE: 787.5600
CLIENT_ID: O
WHY_HELD: =~

d contains these fields:

+ Status

+ Filled

* Remaining

+ Average fill price

* Permanent identifier
* Parent identifier

+ Last fill price

+ Client identifier

* Why held

Display the data in the STATUS property of d.
d(1,1).STATUS

ans =

5-195

5 Functions — Alphabetical List
P

5-196

Filled
Close the IB Trader Workstation connection.
close(ib)
Create an Order Using an Event Handler

To create an order, set up the IB Trader Workstation connection ib using ibtws.

Create an IB Trader Workstation 1Contract object ibContract. An IContract

object is an Interactive Brokers object for containing the data about a security to process
transactions. Then, create an IB Trader Workstation 10rder object ibOrder. An
10rder object is an Interactive Brokers object that contains the order conditions to place
an order. For an example showing how to create these objects, see “Create and Manage
an Interactive Brokers Order” on page 4-26. For details about creating these objects, see
Interactive Brokers API Reference Guide.

Obtain the next valid order identification number id using ib.
id = orderid(ib)

id

768409.00

Execute the order using ib, ibContract, ibOrder, and id. This code assumes
a buy market order for two shares. Use the sample event handler function
ibExampleEventHandler or write a custom event handler function.

d = createOrder(ib,ibContract, ibOrder, id,@ibExampleEventHandler)
d =
768409.00
Columns 1 through 5
[1x1 COM.TWS TwsCtrl 1] [13.00] [768409.00] *Submitted” [0]
Columns 6 through 12
[2.00] [0] [1679681704.00] [0]1 [0] [0] "

Columns 13 through 14

http://www.interactivebrokers.com/en/software/api/api.htm

createOrder

[1x1 struct] "orderStatus”

d contains the unique order identifier id.

ibExampleEventHandler displays order status data in the Command Window. The
columns are:

+ Interactive Brokers ActiveX object

+ Event identifier

* Unique order identifier

* Order status

+ Filled

* Remaining

+ Average fill price

* Permanent identifier

* Parent identifier

+ Last fill price

+ Client identifier

* Why held

* Structure that repeats the contents of the columns

+ Event type
For details about this data, see Interactive Brokers API Reference Guide.
Close the IB Trader Workstation connection.

close(ib)

. “Create an Order Using IB Trader Workstation” on page 1-8

. “Create Interactive Brokers Combination Order” on page 4-39
. “Create and Manage an Interactive Brokers Order” on page 4-26
. “Request Interactive Brokers Historical Data” on page 4-32

. “Request Interactive Brokers Real-Time Data” on page 4-35

5-197

http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

5-198

Input Arguments

ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

ibContract — IB Trader Workstation contract
IContract object

IB Trader Workstation contract, specified as an IB Trader Workstation IContract
object. This object is the instrument or security used in the order transaction. Create
this object by calling the Interactive Brokers API function createContract. For details
about createContract and the attributes that you can set, see Interactive Brokers API
Reference Guide.

ibOorder — IB Trader Workstation order
I0rder object

IB Trader Workstation order, specified as an IB Trader Workstation 10rder object. This
object contains the order conditions, which are: the action of the order, for example, buy
or sell; the order quantity; and the type of order, for example, market or limit. Create this
object by calling the Interactive Brokers API function createOrder. For details about
the attributes that you can set and createOrder, see Interactive Brokers API Reference
Guide.

id — IB Trader Workstation order unique identifier
scalar

IB Trader Workstation order unique identifier, specified as a scalar.
Data Types: double

eventhandler — Event handler
function handle | character vector

Event handler, specified as a function handle or a character vector to identify an event
handler function that processes the returned data. Use the sample event handler or write
a custom event handler function. For details, see “Writing and Running Custom Event
Handler Functions with Interactive Brokers” on page 1-28.

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

createOrder

Example: @eventhandler

Data Types: function_handle | char

Output Arguments

d — Interactive Brokers order data
structure | double

Interactive Brokers order data, returned as a structure containing these fields:

+ Status

+ Filled

* Remaining

+ Average fill price

* Permanent identifier
* Parent identifier

+ Last fill price

+ Client identifier

* Why held

When using an event handler function, d is a double containing the unique order
identifier.

More About
Tips

* ibBuiltInErrMsg appears in the MATLAB workspace. Check the status of
connection and function execution by displaying the contents of this variable.
ibBui I'tInErrMsg contains messages related to:

+ Connection
* Information resulting from executing functions

* Errors

. “Workflow for Interactive Brokers” on page 2-6

5-199

5 Functions — Alphabetical List

. “Writing and Running Custom Event Handler Functions with Interactive Brokers”
on page 1-28
. Interactive Brokers API Reference Guide

See Also

close | getdata | history | ibtws | orderid | realtime | timeseries

Introduced in R2013b

5-200

http://www.interactivebrokers.com/en/software/api/api.htm

getdata

getdata

Request current Interactive Brokers data

Syntax

d = getdata(ib, ibContract)
d = getdata(ib, ibContract,eventhandler)
Description

d = getdata(ib, ibContract) requests Interactive Brokers current data over the IB
Trader Workstation connection ib using the IB Trader Workstation 1Contract object
ibContract to signify the instrument.

d = getdata(ib, ibContract,eventhandler) requests Interactive Brokers current
data using an event handler function eventhandler. Use the sample event handler
ibExampleEventHandler or write a custom event handler function.

Examples

Request Current Data

To request Interactive Brokers current data, set up the IB Trader Workstation
connection Ib using ibtws. Create an IB Trader Workstation 1Contract object
ibContract as shown in “Request Interactive Brokers Real-Time Data” on page 4-35.
An IContract object is an Interactive Brokers object for containing the data about a
security to process transactions. For details about creating this object, see Interactive
Brokers API Reference Guide.

Request current data using ib and ibContract.

d

getdata(ib, ibContract)

d =

5-201

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

5-202

LAST _PRICE: 6.85
LAST _SIZE: 1.00
VOLUME: 187.00
BID_PRICE: 6.84
BID_SIZE: 14.00
ASK_PRICE: 6.86
ASK_SIZE: 13.00

d contains these fields:

* Last price

+ Last size

* Volume
+ Bid price
+ Bid size
+ Ask price
* Ask size

Display the data in the BID_PRICE field of d.
d.BID_PRICE

ans =
6.84

Close the IB Trader Workstation connection.
close(ib)
Request Current Data Using an Event Handler

To request Interactive Brokers current data, set up the IB Trader Workstation
connection Ib using ibtws. Create an IB Trader Workstation 1Contract object
ibContract as shown in “Request Interactive Brokers Real-Time Data” on page 4-35.
An IContract object is an Interactive Brokers object for containing the data about a
security to process transactions. For details about creating this object, see Interactive
Brokers API Reference Guide.

Request current data using ib, ibContract, and sample event handler function
ibExampleEventHandler. Use ibExampleEventHandler or write a custom event
handler function.

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

getdata

getdata(ib, ibContract,@ibExampleEventHandler)

1418.00
Columns 1 through 5
[1x1 COM.TWS TwsCtrl 1] [2.00] [1418.00] [0] [5.00]
Columns 6 through 7

[1x1 struct] "tickSize"

d is the request identifier.

After d, ibExampleEventHandler streams current data to the Command Window. Each
column set is a type of tick.

For a size tick, the columns are:

Interactive Brokers ActiveX object

Event identifier

Request identifier

Tick type

Size

Structure that repeats the contents of the columns

Event type

Close the IB Trader Workstation connection.

close(ib)

“Create an Order Using IB Trader Workstation” on page 1-8
“Create Interactive Brokers Combination Order” on page 4-39
“Create and Manage an Interactive Brokers Order” on page 4-26
“Request Interactive Brokers Historical Data” on page 4-32

“Request Interactive Brokers Real-Time Data” on page 4-35

5-203

5 Functions — Alphabetical List
P

5-204

Input Arguments

ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

ibContract — IB Trader Workstation contract
IContract object

IB Trader Workstation contract, specified as an IB Trader Workstation IContract
object. This object is the instrument or security used in the order transaction. Create
this object by calling the Interactive Brokers API function createContract. For details
about createContract and the attributes that you can set, see Interactive Brokers API
Reference Guide.

eventhandler — Event handler
function handle | character vector

Event handler, specified as a function handle or a character vector to identify an event
handler function that processes the returned data. Use the sample event handler or write
a custom event handler function. For details, see “Writing and Running Custom Event
Handler Functions with Interactive Brokers” on page 1-28.

Example: @eventhandler

Data Types: function_handle | char

Output Arguments

d — Interactive Brokers current data
structure | double

Interactive Brokers current data, returned as a structure containing these tick types:

+ Last price
+ Last size
* Volume

+ Bid price

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

getdata

+ Bid size
+ Ask price
+ Ask size

When using an event handler function, d is a double denoting the request identifier.

More About
Tips

+ ibBui ItInErrMsg appears in the MATLAB workspace. Check the status of
connection and function execution by displaying the contents of this variable.
ibBui lItInErrMsg contains messages related to:

Connection

+ Information resulting from executing functions

* Errors
. “Workflow for Interactive Brokers” on page 2-6
. “Writing and Running Custom Event Handler Functions with Interactive Brokers”
on page 1-28

. Interactive Brokers API Reference Guide

See Also

close | createOrder | history | ibtws | realtime | timeseries

Introduced in R2013b

5-205

http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

5-206

history

Request Interactive Brokers historical data

Syntax

d = history(ib, ibContract,startdate,enddate)

d = history(ib, ibContract,startdate,enddate, ticktype,period)
d = history(ib, ibContract,startdate,enddate, ticktype,period,

tradehours)
d = history(ib, ibContract,startdate,enddate, ticktype,period,
tradehours,eventhandler)

Description

d = history(ib, ibContract,startdate,enddate) requests Interactive

Brokers historical data using the IB Trader Workstation connection ib and IB Trader
Workstation IContract object ibContract to signify the instrument. history
requests data from startdate through enddate. The default tick type is "TRADES" and
default period is "1 day”.

d = history(ib, ibContract,startdate,enddate, ticktype,period) requests
Interactive Brokers historical data for a specific type of market data tick ticktype and
bar size period.

d = history(ib, ibContract,startdate,enddate, ticktype,period,
tradehours) requests Interactive Brokers historical data using the flag tradehours to
include all data or only data within regular trading hours.

d = history(ib, ibContract,startdate,enddate, ticktype,period,
tradehours,eventhandler) requests Interactive Brokers historical data
using an event handler function eventhandler. Use the sample event handler
ibExampleEventHandler or write a custom event handler function.

history

Examples

Request Interactive Brokers Historical Data with TRADES Default Tick Type and 1-Day Default
Period

To request historical data, set up the IB Trader Workstation connection ib using ibtws.
Create an IB Trader Workstation 1Contract object ibContract as shown in “Request
Interactive Brokers Historical Data” on page 4-32. An 1Contract object is an Interactive
Brokers object for containing the data about a security to process transactions. For
details about creating this object, see Interactive Brokers API Reference Guide.

Request the last 5 days of historical data using ib and ibContract.

startdate = floor(now)-5;
enddate = floor(now);

d = history(ib, ibContract,startdate,enddate)
d =

Columns 1 through 5

736308.00 751.83 755.85 743.83 749.46
736309.00 742.69 745.71 736.75 738.20
736312.00 743.08 748.73 724.17 748.48
736313.00 752.50 758.08 744 .43 747.65

Columns 6 through 9

12513.00 9107.00 751.28 0
15984.00 11121.00 740.39 0
17125.00 11355.00 736.61 0
2139.00 2568.00 751.29 0

d returns the historical data for 5 days. When ticktype and period are not specified
as input arguments, history returns historical data using the default ticktype of
"TRADES" and the default periodof "1 day”.

Each row of d contains historical data for 1 day. The columns in matrix d are:

* Numeric representation of a date
* Open price

+ High price

* Low price

+ Close price

* Volume

5-207

http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

5-208

* Bar count
* Weighted average price
* Flag indicating if there are gaps in the bar

Display the open price for the most recent record in matrix d.
d(1,2)

ans =
751.83
Close the IB Trader Workstation connection.
close(ib)
Request Interactive Brokers Historical Data with BID Tick Type and 1-Week Period

To request historical data, set up the IB Trader Workstation connection Ib using ibtws.
Create an IB Trader Workstation IContract object ibContract as shown in “Request
Interactive Brokers Historical Data” on page 4-32. An IContract object is an Interactive
Brokers object for containing the data about a security to process transactions. For
details about creating this object, see Interactive Brokers API Reference Guide.

Request the last 50 days of historical data using ib, ibContract, and these arguments:

+ Start date is 50 days ago.

* End date is the current moment.

+ Tick typeis "BID".

* Barsizeis "1W".

startdate = floor(now)-50;

enddate = floor(now);

ticktype = "BID";

period = "1W";

d = history(ib, ibContract,startdate,enddate, ticktype,period)
d =

Columns 1 through 5

736267 .00 699.28 720.36 695.10 710.50
736274 .00 710.35 739.20 703.18 732.77
736281.00 730.00 740.92 711.99 711.99
736288.00 713.05 757.73 706.00 756.35
736295.00 755.30 762.70 737.52 748 .56

http://www.interactivebrokers.com/en/software/api/api.htm

history

736302.00 749.33 775.81 740.00 766.15
736309.00 765.00 768.18 735.57 738.20
736312.00 738.87 757.77 700.00 747.84

Columns 6 through 9

-1.00 -1.00 -1.00 0
-1.00 -1.00 -1.00 0
-1.00 -1.00 -1.00 0
-1.00 -1.00 -1.00 0
-1.00 -1.00 -1.00 0
-1.00 -1.00 -1.00 0
-1.00 -1.00 -1.00 0
-1.00 0 -1.00 0

d returns the historical data for 50 days.
Each row of d contains historical data for 1 week.
The columns in matrix d are:

+ Numeric representation of a date

* Open price

* High price

* Low price

+ Close price

* Volume

* Bar count

+ Weighted average price

+ Flag indicating if there are gaps in the bar

Display the high price for the most recent record in matrix d.
d(1,3)
ans =
720.36
Close the IB Trader Workstation connection.
close(ib)
Request Interactive Brokers Historical Data with TRADES Default Tick Type and 1-Month Period

To request historical data, set up the IB Trader Workstation connection Ib using ibtws.
Create an IB Trader Workstation IContract object ibContract as shown in “Request

5-209

5 Functions — Alphabetical List
P

5-210

Interactive Brokers Historical Data” on page 4-32. An IContract object is an Interactive
Brokers object for containing the data about a security to process transactions. For
details about creating this object, see Interactive Brokers API Reference Guide.

Request the last 50 days of historical data using ib, ibContract, and these arguments:

+ Start date is 50 days ago.

* End date is the current moment.

* The empty character vector denotes the default tick type "TRADES".
* Barsizeis "1IM".

startdate = floor(now)-50;
enddate = floor(now);

ticktype = ;
period = "1M";

d = history(ib, ibContract,startdate,enddate, ticktype,period)
d =

Columns 1 through 5

736267.00 661.18 738.42 641.64 710.85
736298.00 712.00 762.71 705.85 742 .60
736312.00 745.50 775.96 724.17 748.73

Columns 6 through 9

186268.00 127222.00 692.28 0
234490.00 160672.00 734.32 0
151754.00 102702.00 754 .11 0

d returns the historical data for 50 days.
Each row of d contains historical data for 1 month.
The columns in matrix d are:

* Numeric representation of a date
* Open price

* High price

+ Low price

* Close price

* Volume

+ Bar count

http://www.interactivebrokers.com/en/software/api/api.htm

history

* Weighted average price
* Flag indicating if there are gaps in the bar

Display the low price for the most recent record in matrix d.
d(1.,4)
ans =
641.64
Close the IB Trader Workstation connection.
close(ib)
Request Interactive Brokers Historical Data Within Regular Trading Hours

To request historical data, set up the IB Trader Workstation connection ib using ibtws.
Create an IB Trader Workstation 1Contract object ibContract as shown in “Request
Interactive Brokers Historical Data” on page 4-32. An 1Contract object is an Interactive
Brokers object for containing the data about a security to process transactions. For
details about creating this object, see Interactive Brokers API Reference Guide.

Request the last 50 days of historical data using ib, ibContract, and these arguments:

+ Start date is 50 days ago.

* End date is the current moment.

* The empty character vector denotes the default tick type "TRADES".
* Barsizeis "1M".

* Within regular trading hours.

startdate = floor(now)-50;
enddate = floor(now);
ticktype = "7;

period = "1M";
tradehours = true;

d = history(ib, ibContract,startdate,enddate, ticktype,period, ...
tradehours)
d =

Columns 1 through 5

5-211

http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

5-212

736267 .00 661.18 730.00 641.73 710.81
736298.00 711.21 762.71 705.85 742 .60
736312.00 747.11 775.96 724.17 748.73

Columns 6 through 9

169656.00 125271.00 691.49 0
210536.00 160260.00 734.41 0
135075.00 102377.00 753.82 0

d returns the historical data for 50 days.
Each row of d contains historical data for 1 month.
The columns in matrix d are:

+ Numeric representation of a date

* Open price

* High price

* Low price

+ Close price

* Volume

* Bar count

+ Weighted average price

+ Flag indicating if there are gaps in the bar

Display the low price for the most recent record in matrix d.
d(1,4)
ans =
641.73
Close the IB Trader Workstation connection.
close(ib)
Request Interactive Brokers Historical Data Using an Event Handler

To request historical data, set up the IB Trader Workstation connection ib using ibtws.
Create an IB Trader Workstation IContract object ibContract as shown in “Request
Interactive Brokers Historical Data” on page 4-32. An IContract object is an Interactive

history

Brokers object for containing the data about a security to process transactions. For
details about creating this object, see Interactive Brokers API Reference Guide.

Request the last 50 days of historical data using ib, ibContract, and these arguments:

+ Start date is 50 days ago.

* End date is the current moment.

* The empty character vector denotes the default tick type "TRADES".
* Barsizeis "1IM".

* Within regular trading hours.

* Sample event handler function 1bExampleEventHandler.
Use ibExampleEventHandler or write a custom event handler function.

startdate = floor(now)-50;
enddate = floor(now);

ticktype = ;

period = "1M";

tradehours = true;

eventhandler = "ibExampleEventHandler”;

d = history(ib, ibContract,startdate,enddate, ticktype,period, ...
tradehours,eventhandler)

9157.00
Columns 1 through 4
[1x1 COM.TWS_TwsCtrl_1] [22.00] [9157.00] "20151030"°
Columns 5 through 9
[661.18] [730.00] [641.73] [710.81] [169656.00]
Columns 10 through 14

[125271.00] [691.49] [o] [1x1 struct] “historicalData*”

d is the request identifier.

After d, ibExampleEventHandler streams historical data to the Command Window.

The columns are:

* Interactive Brokers ActiveX object

5-213

http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

+ Event identifier

* Request identifier

* Date

* Open price

* High price

* Low price

+ Close price

* Volume

* Bar count

+ Weighted average price

+ Flag indicating if there are gaps in the bar
+ Structure that repeats the contents of the columns

+ Event type

Close the IB Trader Workstation connection.
close(ib)

. “Create an Order Using IB Trader Workstation” on page 1-8

. “Create Interactive Brokers Combination Order” on page 4-39

. “Create and Manage an Interactive Brokers Order” on page 4-26
. “Request Interactive Brokers Historical Data” on page 4-32

. “Request Interactive Brokers Real-Time Data” on page 4-35
Input Arguments

ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

ibContract — IB Trader Workstation contract
IContract object

5-214

history

IB Trader Workstation contract, specified as an IB Trader Workstation 1Contract
object. This object is the instrument or security used in the order transaction. Create
this object by calling the Interactive Brokers API function createContract. For details
about createContract and the attributes that you can set, see Interactive Brokers API
Reference Guide.

startdate — Start date
date character vector | date scalar

Start date, specified as a starting date character vector or scalar.

Data Types: double | char

enddate — End date
date character vector | date scalar
End date, specified as an ending date character vector or scalar.

Data Types: double | char

ticktype — Types of market data ticks
"TRADES*® (default) | "MIDPOINT" | "BID" | "ASK" | "BID_ASK" |
"HISTORICAL_VOLATILITY"® | "OPTION_IMPLIED_VOLATILITY"

Types of market data ticks, specified as one of the preceding values predetermined by the
Interactive Brokers API that denote tick values to collect.

period — Bar size
"1 day~ (default) | "1W=" | "1M"

Bar size, specified as one of the preceding values predetermined by the Interactive
Brokers API that denotes the periodicity for collecting data.

tradehours — Trading hours
false (default) | true

Trading hours, specified as the logical true or False. When this flag is set to true, this
function returns data only within regular trading hours. Otherwise, this function returns
all data.

Data Types: logical

eventhandler — Event handler
function handle | character vector

5-215

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

Event handler, specified as a function handle or a character vector to identify an event
handler function that processes the returned data. Use the sample event handler or write
a custom event handler function. For details, see “Writing and Running Custom Event
Handler Functions with Interactive Brokers” on page 1-28.

Example: @eventhandler

Data Types: function_handle | char

Output Arguments

d — Interactive Brokers historical data
matrix | double

Interactive Brokers historical data, returned as a matrix with these columns:

* Numeric representation of a date

+ Open price

* High price

* Low price

* Close price

* Volume

* Bar count

+ Weighted average price

* Flag indicating if there are gaps in the bar

When using an event handler function, d is a double denoting the request identifier.

More About
Tips

* ibBuiltInErrMsg appears in the MATLAB workspace. Check the status of
connection and function execution by displaying the contents of this variable.
ibBui I'tInErrMsg contains messages related to:

+ Connection

5-216

history

* Information resulting from executing functions

Errors
. “Workflow for Interactive Brokers” on page 2-6
. “Writing and Running Custom Event Handler Functions with Interactive Brokers”
on page 1-28

. Interactive Brokers API Reference Guide

See Also

close | createOrder | getdata | ibtws | realtime | timeseries

Introduced in R2013b

5-217

http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

5-218

timeseries

Request Interactive Brokers aggregated intraday data

Syntax

d = timeseries(ib, ibContract,startdate,enddate,barsize)

d = timeseries(ib, ibContract,startdate,enddate,barsize, ticktype)
d = timeseries(ib, ibContract,startdate,enddate,barsize, ticktype,

tradehours)
d = timeseries(ib, ibContract,startdate,enddate,barsize, ticktype,
tradehours,eventhandler)

Description

d = timeseries(ib, ibContract,startdate,enddate,barsize) requests
Interactive Brokers aggregated intraday data using the IB Trader Workstation
connection i1b and IB Trader Workstation IContract object ibContract to signify the
instrument. Request data between startdate and enddate using the tick aggregation
interval barsize for default tick type "TRADES".

d = timeseries(ib, ibContract,startdate,enddate,barsize,ticktype)
requests Interactive Brokers aggregated intraday data for a specific type of market data
tick ticktype.

d = timeseries(ib, ibContract,startdate,enddate,barsize, ticktype,
tradehours) requests Interactive Brokers aggregated intraday data using the flag
tradehours to include all data or only data within regular trading hours.

d = timeseries(ib, ibContract,startdate,enddate,barsize, ticktype,
tradehours,eventhandler) requests Interactive Brokers aggregated intraday
data using an event handler function eventhandler. Use the sample event handler
ibExampleEventHandler or write a custom event handler function.

timeseries

Examples

Request Interactive Brokers Intraday Data Aggregated Every 5 Minutes with TRADES Default
Tick Type

To request intraday data, set up the IB Trader Workstation connection ib using
ibtws. Create an IB Trader Workstation 1Contract object ibContract as shown
in “Request Interactive Brokers Real-Time Data” on page 4-35. An IContract object
is an Interactive Brokers object for containing the data about a security to process
transactions. For details about creating this object, see Interactive Brokers API
Reference Guide.

Request intraday data aggregated every 5 minutes using ib and ibContract.

startdate = floor(now);
enddate now;
barsize "5 mins®;

d = timeseries(ib,ibContract,startdate,enddate,barsize)

d =

735329.40 6.91 6.91 6.85 6.85 158.00 13.00 6.87
735329.40 6.85 6.87 6.85 6.87 29.00 24.00 6.86
735329.40 6.87 6.89 6.87 6.87 13.00 13.00 6.88

d returns the aggregated 5-minute data with default tick type "TRADES".
Each row in matrix d represents a 5-minute interval.
The columns in matrix d are:

* Numeric representation of a date

* Open price

* High price

* Low price

+ Close price

* Volume

* Bar count

* Weighted average price

* Flag indicating if there are gaps in the bar

5-219

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

Display the open price for the most recent bar in matrix d.
d(1,2)

ans =
6.91

Close the IB Trader Workstation connection.
close(ib)
Request Interactive Brokers Intraday Data Aggregated Every 10 Minutes with a BID Tick Type

To request intraday data, set up the IB Trader Workstation connection ib using
ibtws. Create an IB Trader Workstation 1Contract object ibContract as shown
in “Request Interactive Brokers Real-Time Data” on page 4-35. An IContract object
is an Interactive Brokers object for containing the data about a security to process
transactions. For details about creating this object, see Interactive Brokers API
Reference Guide.

Request intraday data aggregated every 10 minutes using ib, ibContract, and "BID"

tick type.

startdate = floor(now);
enddate = now;

barsize = "10 mins”;

ticktype = "BID";

d = timeseries(ib, ibContract,startdate,enddate,barsize, ticktype)

d =

735329.17 6.38 6.38 6.38 6.38 -1.00 -1.00 -1.00
735329.17 6.38 6.38 6.38 6.38 -1.00 -1.00 -1.00
735329.18 6.38 6.38 6.38 6.38 -1.00 -1.00 -1.00

d returns the aggregated 10-minute data for "BID" tick type.
Each row in matrix d represents a 10-minute interval.

The columns in matrix d are:

+ Numeric representation of a date

* Open price

5-220

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

timeseries

* High price

* Low price

+ Close price

* Volume

* Bar count

+ Weighted average price

* Flag indicating if there are gaps in the bar

Display the high price for the most recent bar in matrix d.
d(1.3)

ans =
6.38

Close the IB Trader Workstation connection.
close(ib)
Request Interactive Brokers Intraday Data Within Regular Trading Hours

To request intraday data, set up the IB Trader Workstation connection ib using
ibtws. Create an IB Trader Workstation 1Contract object ibContract as shown
in “Request Interactive Brokers Real-Time Data” on page 4-35. An IContract object
is an Interactive Brokers object for containing the data about a security to process
transactions. For details about creating this object, see Interactive Brokers API
Reference Guide.

Request intraday data using ib, ibContract, and these arguments:

* Start date is this morning.

* End date is the current moment.
+ Aggregated every 10 minutes.

* Tick type is "BID".

* Within regular trading hours.
startdate = floor(now);

enddate now;
barsize "10 mins*®;

5-221

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

ticktype = "BID";
tradehours = true;

d = timeseries(ib, ibContract,startdate,enddate,barsize,ticktype,. ..
tradehours)
d =

Columns 1 through 5

735852.40 580.70 582.12 580.12 580.27
735852.40 580.27 580.75 579.70 579.80

735852.40 579.80 579.88 578.33 579.44

Columns 6 through 9

-1.00 -1.00 -1.00 0
-1.00 -1.00 -1.00 0
0

-1.00 -1.00 -1.00

d returns the aggregated 10-minute data for "BID" tick type.
Each row in matrix d represents a 10-minute interval.
The columns in matrix d are:

* Numeric representation of a date

* Open price

* High price

* Low price

+ Close price

* Volume

* Bar count

* Weighted average price

+ Flag indicating if there are gaps in the bar

Display the high price for the most recent bar in matrix d.
d(1,3)

ans =
582.12

Close the IB Trader Workstation connection.

5-222

timeseries

close(ib)
Request Interactive Brokers Intraday Data Using an Event Handler

To request intraday data, set up the IB Trader Workstation connection ib using
ibtws. Create an IB Trader Workstation 1Contract object ibContract as shown
in “Request Interactive Brokers Real-Time Data” on page 4-35. An IContract object
is an Interactive Brokers object for containing the data about a security to process
transactions. For details about creating this object, see Interactive Brokers API
Reference Guide.

Request intraday data using ib, ibContract, and these arguments:

+ Start date is this morning.

* End date is the current moment.
+ Aggregated every 10 minutes.

+ Tick typeis "BID".

* Within regular trading hours.

+ Sample event handler function 1bExampleEventHandler.
Use ibExampleEventHandler or write a custom event handler function.

startdate =
enddate now;
barsize "10 mins";

ticktype = "BID";

tradehours = true;

eventhandler = "ibExampleEventHandler”;

floor(now);

d = timeseries(ib, ibContract,startdate,enddate,barsize, ticktype, ...
tradehours, eventhandler)

4853.00
Columns 1 through 3
[1x1 COM.TWS_TwsCtri_1] [22.00] [4853.00]
Columns 4 through 7
"20140909 15:55:00" [580.20] [581.40] [580.09]
Columns 8 through 13

[581.01] [-1.00] [-1.00] [-1.00] [o] [1x1 struct]

5-223

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

Column 14

“historicalData*”

d is the request identifier.

After d, ibExampleEventHandler streams intraday data to the Command Window. The
columns are:

+ Interactive Brokers ActiveX object

+ Event identifier

* Request identifier

* Date

* Open price

* High price

* Low price

+ Close price

* Volume

* Bar count

* Weighted average price

+ Flag indicating if there are gaps in the bar

+ Structure that repeats the contents of the columns

+ Event type

Close the IB Trader Workstation connection.
close(ib)

. “Request Interactive Brokers Real-Time Data” on page 4-35

Input Arguments

ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

5-224

timeseries

ibContract — IB Trader Workstation contract
IContract object

IB Trader Workstation contract, specified as an IB Trader Workstation 1Contract
object. This object is the instrument or security used in the order transaction. Create
this object by calling the Interactive Brokers API function createContract. For details
about createContract and the attributes that you can set, see Interactive Brokers API
Reference Guide.

startdate — Start date
date character vector | date scalar

Start date, specified as a starting date character vector or scalar.

Data Types: double | char

enddate — End date
date character vector | date scalar

End date, specified as an ending date character vector or scalar.

Data Types: double | char

barsize — Tick aggregation interval

"10 secs”" | "15 secs”" | "30 secs” | "1 min® | "2 mins" | *©

3 mins® | ...

Tick aggregation interval, specified as one of the following values predetermined by the
Interactive Brokers API that denotes the size of aggregated bars for collecting data.
* "10 secs”

+ "15 secs”

+ "30 secs”

* "1 min*®

* "2 mins*

* "3 mins*

* "5 mins*

+ "10 mins

+ "15 mins*

+ "20 mins

5-225

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

5-226

+ "30 mins*
* "1 hour-
+ "2 hours
+ "3 hours
* "4 hours*®
* "8 hours*
ticktype — Types of market data ticks

"TRADES*® (default) | "MIDPOINT" | "BID" | "ASK" | "BID_ASK" |
"HISTORICAL_VOLATILITY"® | "OPTION_IMPLIED_VOLATILITY"

Types of market data ticks, specified as one of the preceding values predetermined by the
Interactive Brokers API that denote tick values to collect.

tradehours — Trading hours
false (default) | true

Trading hours, specified as the logical true or false. When this flag is set to true, this
function returns data only within regular trading hours. Otherwise, this function returns
all data.

Data Types: logical

eventhandler — Event handler
function handle | character vector

Event handler, specified as a function handle or a character vector to identify an event
handler function that processes the returned data. Use the sample event handler or write
a custom event handler function. For details, see “Writing and Running Custom Event
Handler Functions with Interactive Brokers” on page 1-28.

Example: @eventhandler

Data Types: function_handle | char

Output Arguments

d — Interactive Brokers aggregated intraday data
matrix | double

timeseries

Interactive Brokers aggregated intraday data, returned as a matrix with these columns:

Numeric representation of a date

Open price

High price

Low price

Close price

Volume

Bar count

Weighted average price

Flag indicating if there are gaps in the bar

When using an event handler function, d is a double denoting the request identifier.

More About

Tips

ibBui ltInErrMsg appears in the MATLAB workspace. Check the status of
connection and function execution by displaying the contents of this variable.
ibBui ItInErrMsg contains messages related to:

+ Connection

+ Information resulting from executing functions

Errors

“Workflow for Interactive Brokers” on page 2-6

“Writing and Running Custom Event Handler Functions with Interactive Brokers”

on page 1-28

Interactive Brokers API Reference Guide

See Also

close | createOrder | getdata | history | ibtws | realtime

Introduced in R2013b

5-227

http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

accounts

Retrieve Interactive Brokers account information

Syntax

d = accounts(ib,acctno)
d accounts(ib,acctno,eventhandler)

Description

d = accounts(ib,acctno) retrieves account information using Interactive Brokers
connection Ib and account number acctno.

d = accounts(ib,acctno,eventhandler) retrieves account information
using an event handler function eventhandler. Use the sample event handler
ibExampleEventHandler or write a custom event handler function.

Examples

Retrieve Account Information

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

ib = ibtws("",7496);
Retrieve account information for account number acctno using ib.
acctno = “AB123456°;

d

accounts(ib,acctno)
d =

AccountCode: "AB123456*"
AccountReady: "true”

5-228

accounts

AccountType: F"LLC*

d is a structure with the fields containing the account information. Here, the fields are:

* Account code
* IB Trader Workstation internal use only

* Account type

For details about this data and the other fields, see Interactive Brokers API Reference
Guide.

Close the IB Trader Workstation connection.
close(ib)
Retrieve Account Information Using an Event Handler

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

ib = ibtws("",7496);

Retrieve account information for account number acctno using ib. Use the sample
event handler ibExampleEventHandler to display the IB Trader Workstation account
information in the Command Window. Use ibExampleEventHandler or write a custom
event handler function.

acctno = "AB123456°;

d accounts(ib,acctno,@ibExampleEventHandler)
d =
1
Columns 1 through 7
[1x1 COM.TWS TwsCtrl 1] [7] "AccountCode* "AB123456" " "AB123456"

Collumn 8

"updateAccountVvValue*

5-229

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

d is an empty double.

The sample event handler ibExampleEventHandler displays the account information
in the Command Window. The columns are:

* Interactive Brokers ActiveX object

* Event identifier

* Account code

+ Event key

* Currency

* Account name

* Structure that repeats the contents of the columns

* Request type

For details about this data, see Interactive Brokers API Reference Guide.

Close the IB Trader Workstation connection.
close(ib)

. “Create and Manage an Interactive Brokers Order” on page 4-26

Input Arguments

ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

acctno — Account number
(:hal“actel” vector

Account number, specified as a character vector that identifies the Interactive Brokers
account number.

Example:

5-230

http://www.interactivebrokers.com/en/software/api/api.htm

accounts

Data Types: char
eventhandler — Event handler

function handle | character vector

Event handler, specified as a function handle or a character vector to identify an event
handler function that processes the returned data. Use the sample event handler or write
a custom event handler function. For details, see “Writing and Running Custom Event
Handler Functions with Interactive Brokers” on page 1-28.

Example: @eventhandler

Data Types: function_handle | char

Output Arguments

d — Account information
structure | double

Account information, returned as a structure containing fields with the Interactive
Brokers account information. When using an event handler function, d is an empty
double.

More About
Tips

* ibBuiltInErrMsg appears in the MATLAB workspace. Check the status of
connection and function execution by displaying the contents of this variable.
ibBui I'tInErrMsg contains messages related to:

Connection

+ Information resulting from executing functions

* Errors
. “Workflow for Interactive Brokers” on page 2-6
. “Writing and Running Custom Event Handler Functions with Interactive Brokers”
on page 1-28

. Interactive Brokers API Reference Guide

5-231

http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

See Also

close | createOrder | history | ibtws | timeseries

Introduced in R2015a

5-232

contractdetails

contractdetails

Request Interactive Brokers contract details

Syntax

[d,reqid] = contractdetails(ib, ibContract)
[d,reqid] = contractdetails(ib, ibContract,eventhandler)

Description

[d,reqid] = contractdetails(ib, ibContract) requests Interactive Brokers
contract details using IB Trader Workstation connection ib and IB Trader Workstation
IContract object ibContract.

[d,reqid] = contractdetails(ib, ibContract,eventhandler) requests
Interactive Brokers contract details using an event handler function eventhandler. Use
the sample event handler ibExampleEventHandler or write a custom event handler
function.

Examples

Request Interactive Brokers Contract Details

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

ib = ibtws("",7496);

Create the IB Trader Workstation 1Contract object ibContract. Here, this object
describes a security with these property values:

* Google symbol

* Stock security type

+ Aggregate exchange

* Primary exchange

5-233

5 Functions — Alphabetical List
P

5-234

* USD currency

EX is a sample primary exchange name. Substitute your primary exchange name in
ibContract.primaryExchange.

ibContract = ib.Handle.createContract;
ibContract.symbol = "GOOG";
ibContract.secType = "STK";
ibContract.exchange = "SMART";
ibContract.primaryExchange = "EX";
ibContract.currency = "USD";

For details about the 1Contract object, see Interactive Brokers API Reference Guide.

Request contract details data using ib and ibContract.

[d,reqid] = contractdetails(ib, ibContract)

d =
marketName: “NMS*®
tradingClass: "NMS*
minTick: 0.01
reqid =

1269

d is a structure containing the contract details data including the market name, trading
class name, and minimum tick. For details about this data, see Interactive Brokers API
Reference Guide.

reqid is a number that Interactive Brokers uses to track this contract details data
request.

Close the IB Trader Workstation connection.
close(ib)
Request Interactive Brokers Contract Details Using an Event Handler

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

contractdetails

ib = ibtws("",7496);

Create the IB Trader Workstation IContract object ibContract. Here, this object
describes a security with these property values:

* Google symbol

+ Stock security type
+ Aggregate exchange
* Primary exchange

+ USD currency

EX is a sample primary exchange name. Substitute your primary exchange name in
ibContract.primaryExchange.

ibContract = ib.Handle.createContract;

ibContract.symbol = "GO0OG";

ibContract.secType = "STK";

ibContract.exchange = "SMART";

ibContract.primaryExchange = "EX";

ibContract.currency = "USD";

For details about the 1Contract object, see Interactive Brokers API Reference Guide.

Request contract details data using ib, ibContract, and sample event handler function
ibExampleEventHandler. Use ibExampleEventHandler or write a custom event
handler function.

[d,reqid] = contractdetails(ib, ibContract,@ibExampleEventHandler)
d =
1269
reqid =
1269
Columns 1 through 4
[1x1 COM.TWS_TwsCtrl_1] [100] [1269] [1x1 Interface.Tws_ActiveX_Control_m

Columns 5 through 6

5-235

http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

5-236

[1x1 struct] "contractDetai IsEx”

d and reqgid return a number that Interactive Brokers uses to track this contract details
data request.

After these variables, ibExampleEventHandler returns contract details data to the
Command Window. The columns are:

+ Interactive Brokers ActiveX object

+ Event identifier

* Request identifier

* Contract details ActiveX object

* Structure that repeats the contents of the columns

* Request type

For details about this data, see Interactive Brokers API Reference Guide.
Close the IB Trader Workstation connection.

close(ib)

. “Create and Manage an Interactive Brokers Order” on page 4-26

Input Arguments

ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

ibContract — IB Trader Workstation contract
IContract object

IB Trader Workstation contract, specified as an IB Trader Workstation IContract
object. This object is the instrument or security used in the order transaction. Create
this object by calling the Interactive Brokers API function createContract. For details
about createContract and the attributes that you can set, see Interactive Brokers API
Reference Guide.

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

contractdetails

eventhandler — Event handler
function handle | character vector

Event handler, specified as a function handle or a character vector to identify an event
handler function that processes the returned data. Use the sample event handler or write
a custom event handler function. For details, see “Writing and Running Custom Event
Handler Functions with Interactive Brokers” on page 1-28.

Example: @eventhandler

Data Types: function_handle | char

Output Arguments

d — Interactive Brokers contract details data
structure | scalar

Interactive Brokers contract details data, returned as a structure. When using an event
handler function, d is a scalar that denotes the contract detail data request identifier.

reqid — Contract detail data request identifier
scalar

Contract detail data request identifier, returned as a scalar. Interactive Brokers uses this
number to match responses to the correct data request when multiple data requests are
present.

More About
Tips

* ibBuiltInErrMsg appears in the MATLAB workspace. Check the status of
connection and function execution by displaying the contents of this variable.
ibBui I'tInErrMsg contains messages related to:

+ Connection
+ Information resulting from executing functions

* Errors

. “Workflow for Interactive Brokers” on page 2-6

5-237

5 Functions — Alphabetical List

. “Writing and Running Custom Event Handler Functions with Interactive Brokers”
on page 1-28
. Interactive Brokers API Reference Guide

See Also

close | createOrder | history | ibtws | timeseries

Introduced in R2015a

5-238

http://www.interactivebrokers.com/en/software/api/api.htm

executions

executions

Request Interactive Brokers execution data

Syntax

d = executions(ib,filter)
d = executions(ib,filter,eventhandler)
Description

d = executions(ib, filter) requests Interactive Brokers execution data using
the IB Trader Workstation connection ib and the Interactive Brokers execution filter
filter.

d = executions(ib, filter,eventhandler) requests Interactive Brokers execution
data using an event handler function eventhandler. Use the sample event handler
ibExampleEventHandler or write a custom event handler function.

Examples

Request Execution Filter Data

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

ib = ibtws("",7496);

Create the IB Trader Workstation execution filter 1ExecutionFi lter object Filter.
Here, this object specifies these property values:

* Buy side

+ Stock security type
+ Aggregate exchange
* Google symbol

Ffilter = ib.Handle.createExecutionFilter;

5-239

5 Functions — Alphabetical List
P

filter.side = "BUY";
Ffilter.secType = "STK";
Ffilter_exchange = "SMART";
Ffilter.symbol = "GO0OG";

For details about the 1ExecutionFilter object, see Interactive Brokers API Reference
Guide.

Request IB Trader Workstation execution filter data using ib and filter.
d = executions(ib,Filter)
d =
enddetails: [1x1 struct]
d is a structure containing the execution filter data in the structure enddetails.

Display the execution filter data.

d.enddetails

ans =
Type: “execDetailsEnd*®
Source: [1x1 COM.TWS_ TwsCtrl_1]
EventlID: 38

reqld: 1
The structure enddetai ls contains these fields:

+ Data request type
+ Interactive Brokers ActiveX object
+ Event identifier

+ Execution filter data request identifier

Close the IB Trader Workstation connection.
close(ib)

Request Execution Filter Data Using an Event Handler

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

5-240

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

executions

ib = ibtws("",7496);

Create the IB Trader Workstation execution filter 1ExecutionFi lter object Filter.
Here, this object specifies these property values:

* Buy side

* Stock security type

+ Aggregate exchange

* Google symbol

filter = ib.Handle.createExecutionFilter;
Ffilter.side = "BUY";

filter.secType = "STK";

filter_exchange = "SMART";

Ffilter.symbol = "GOOG";

For details about the 1ExecutionFi lter object, see Interactive Brokers API Reference
Guide.

Request IB Trader Workstation execution filter data using ib and filter. Use the
sample event handler 1bExampleEventHandler to display the IB Trader Workstation
execution filter data in the Command Window. Use ibExampleEventHandler or write a
custom event handler function.

d = executions(ib,Ffilter,@ibExampleEventHandler)

d

1
[1x1 COM.TWS TwsCtrl 1] [38] [1] [1x1 struct] "execDetailsend*®
d is an empty double.
ibExampleEventHandler displays the data in the Command Window. The columns are:

+ Interactive Brokers ActiveX object

+ Event identifier

+ Execution filter data request identifier

* Structure that repeats the contents of the columns

* Data request type

5-241

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

For details, see Interactive Brokers API Reference Guide.

Close the IB Trader Workstation connection.
close(ib)

. “Create and Manage an Interactive Brokers Order” on page 4-26

Input Arguments

ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

filter — IB Trader Workstation execution filter
IExecutionFi lter object

IB Trader Workstation execution filter, specified as a 1ExecutionFi lter object. For
details about this object, see Interactive Brokers API Reference Guide.

Example:

Data Types: struct

eventhandler — Event handler
function handle | character vector

Event handler, specified as a function handle or a character vector to identify an event
handler function that processes the returned data. Use the sample event handler or write
a custom event handler function. For details, see “Writing and Running Custom Event
Handler Functions with Interactive Brokers” on page 1-28.

Example: @eventhandler

Data Types: function_handle | char

Output Arguments

d — IB Trader Workstation execution filter data
structure | double

5-242

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

executions

IB Trader Workstation execution filter data, returned as a structure. When using an
event handler function, d is an empty double.

More About
Tips

* ibBuiltInErrMsg appears in the MATLAB workspace. Check the status of
connection and function execution by displaying the contents of this variable.
ibBui I'tInErrMsg contains messages related to:

+ Connection

Information resulting from executing functions

* Errors
. “Workflow for Interactive Brokers” on page 2-6
. “Writing and Running Custom Event Handler Functions with Interactive Brokers”
on page 1-28
. Interactive Brokers API Reference Guide
See Also

close | createOrder | getdata | history | ibtws | timeseries

Introduced in R2015a

5-243

http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

5-244

marketdepth

Request Interactive Brokers market depth data

Syntax

d
d

marketdepth(ib, ibContract,depth)
marketdepth(ib, ibContract,depth,eventhandler)

Description

d = marketdepth(ib, ibContract,depth) requests Interactive Brokers market
depth data using the IB Trader Workstation connection ib, IB Trader Workstation
IContract object ibContract, and price level depth.

d = marketdepth(ib, ibContract,depth,eventhandler) requests Interactive
Brokers market depth data using an event handler function eventhandler. Use the
sample event handler 1bExampleEventHandler or write a custom event handler
function.

Examples

Request Market Depth Data

To request Interactive Brokers market depth data, set up the IB Trader Workstation
connection Ib using ibtws. Create an IB Trader Workstation 1Contract object
ibContract as shown in “Request Interactive Brokers Real-Time Data” on page 4-35.
An IContract object is an Interactive Brokers object for containing the data about a
security to process transactions. For details about creating this object, see Interactive
Brokers API Reference Guide.

Request market depth data using 1b and 1bContract. Specify five price levels for
the bid and offer sides for depth. This code assumes 1bContract is an E-mini S&P
500 futures contract with an expiry of December 2014 that trades on the CME Globex
exchange.

depth = 5;

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

marketdepth

o
1l

marketdepth(ib, ibContract,depth)

bid: [5x2 double]
offer: [5x2 double]

d is a structure that contains the fields for bid and offer price levels.

Display the bid prices for five levels of market depth.

d.bid
ans =
1992.5 495
1992.25 1479
1992 1950
1991.75 1763
1991.5 2117

The first column contains the bid price and the second column contains the bid size.
Close the IB Trader Workstation connection.

close(ib)
Request Market Depth Data Using an Event Handler

To request Interactive Brokers market depth data, set up the IB Trader Workstation
connection Ib using ibtws. Create an IB Trader Workstation 1Contract object
ibContract as shown in “Request Interactive Brokers Real-Time Data” on page 4-35.
An IContract object is an Interactive Brokers object for containing the data about a
security to process transactions. For details about creating this object, see Interactive
Brokers API Reference Guide.

Request market depth data using ib and ibContract. Specify five price levels for

the bid and offer sides for depth. This code assumes ibContract is an E-mini S&P
500 futures contract with an expiry of December 2014 that trades on the CME Globex
exchange. Use the sample event handler function ibExampleEventHandler or write a
custom event handler function.

depth = 5;

5-245

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

5-246

o
1l

marketdepth(ib, ibContract,depth,@ibExampleEventHandler)

8147

[1x1 COM.TWS TwsCtrl_ 1] [16.00] [8147.00] [0] [0] [1.00]

d is the request identifier.

After d, ibExampleEventHandler streams market depth data to the Command
Window.

The columns are:

+ Interactive Brokers ActiveX object
+ Event identifier

* Request identifier

* Position

* Operation

+ Side
* Price
+ Size

+ Structure that repeats the contents of the columns

+ Event type

Close the IB Trader Workstation connection.
close(ib)

. “Create and Manage an Interactive Brokers Order” on page 4-26

Input Arguments

ib — IB Trader Workstation connection
connection object

[1988.

marketdepth

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

ibContract — IB Trader Workstation contract
IContract object

IB Trader Workstation contract, specified as an IB Trader Workstation IContract
object. This object is the instrument or security used in the order transaction. Create
this object by calling the Interactive Brokers API function createContract. For details
about createContract and the attributes that you can set, see Interactive Brokers API
Reference Guide.

depth — IB Trader Workstation market depth
112131 ..

IB Trader Workstation market depth, specified as a scalar from one through 10. This
number denotes the depth of the active book.
Data Types: double

eventhandler — Event handler
function handle | character vector

Event handler, specified as a function handle or a character vector to identify an event
handler function that processes the returned data. Use the sample event handler or write
a custom event handler function. For details, see “Writing and Running Custom Event
Handler Functions with Interactive Brokers” on page 1-28.

Example: @eventhandler

Data Types: function_handle | char

Output Arguments

d — IB Trader Workstation market depth data
structure | double

IB Trader Workstation market depth data, returned as a structure containing the price

level data for the bid and offer prices. Price level data consists of the price and size. When
using an event handler function, d is a double denoting the request identifier.

5-247

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

More About
Tips

* ibBuiltInErrMsg appears in the MATLAB workspace. Check the status of
connection and function execution by displaying the contents of this variable.
ibBui I'tInErrMsg contains messages related to:

+ Connection

Information resulting from executing functions

* Errors
. “Workflow for Interactive Brokers” on page 2-6
. “Writing and Running Custom Event Handler Functions with Interactive Brokers”
on page 1-28

. Interactive Brokers API Reference Guide

See Also

close | createOrder | history | ibtws | realtime | timeseries

Introduced in R2015a

5-248

http://www.interactivebrokers.com/en/software/api/api.htm

orderid

orderid

Obtain next valid order identification number

Syntax

id = orderid(ib)

Description

id = orderid(ib) obtains the next valid order identification number for Interactive
Brokers connection ib.

Examples

Obtain Next Valid Order Identification Number

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

ib = ibtws("",7496);
Obtain the next valid order identification number using ib.
id = orderid(ib)
id =

54110686

id contains the next valid order identification number. Use this number in
createOrder.

Close the IB Trader Workstation connection.
close(ib)

. “Create and Manage an Interactive Brokers Order” on page 4-26

5-249

5 Functions — Alphabetical List
P

Input Arguments

ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

Output Arguments

id — Next valid order identification number
scalar

Next valid order identification number, returned as a scalar.

More About
Tips

* ibBuiltInErrMsg appears in the MATLAB workspace. Check the status of
connection and function execution by displaying the contents of this variable.
ibBui I'tInErrMsg contains messages related to:

+ Connection
Information resulting from executing functions

+ Errors

. “Workflow for Interactive Brokers” on page 2-6

. Interactive Brokers API Reference Guide

See Also

close | createOrder | getdata | history | ibtws | timeseries

Introduced in R2015a

5-250

http://www.interactivebrokers.com/en/software/api/api.htm

orders

orders

Request Interactive Brokers open order data

Syntax

o0 = orders(ib)

0 = orders(ib,client)
o = orders(ib,client,eventhandler)
Description

0 = orders(ib) requests Interactive Brokers open order data using IB Trader
Workstation connection ib for the current client only.

0 = orders(ib,client) requests Interactive Brokers open order data using IB Trader
Workstation connection ib and a client flag. client denotes requesting data from the
current client or all clients.

o = orders(ib,client,eventhandler) requests Interactive Brokers open order
data using an event handler function eventhandler. Use the sample event handler
ibExampleEventHandler or write a custom event handler function.

Examples

Request Open Order Data

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

ib = ibtws("",7496);

Create the IB Trader Workstation IContract object ibContract. Here, this object
describes a security with these property values:

* Google symbol
* Stock security type

5-251

5 Functions — Alphabetical List
P

5-252

+ Aggregate exchange
* Primary exchange
+ USD currency

EX is a sample primary exchange name. Substitute your primary exchange name in
ibContract.primaryExchange.

ibContract = ib.Handle.createContract;
ibContract.symbol = "GOOG";
ibContract.secType = °"STK";
ibContract.exchange = "SMART";
ibContract.primaryExchange = "EX";
ibContract.currency = “USD";

Create the IB Trader Workstation 10rder object 1bOrder. Here, this object describes a
limit order to sell two shares with a limit price of $590.

ibOrder = ib.Handle.createOrder;
ibOrder.action = "SELL";
ibOrder.totalQuantity = 2;
ibOrder.orderType = "LMT"
ibOrder.ImtPrice = 590;

For details about the 1Contract and 10rder objects, see Interactive Brokers API
Reference Guide.

Create a unique order identifier id.
id = orderid(ib);
Execute the order using:

* IB Trader Workstation connection ib
+ IB Trader Workstation IContract object ibContract
+ IB Trader Workstation 10rder object ibOrder

* Unique order identifier id

d = createOrder(ib, ibContract, ibOrder,id);
Retrieve order information o.

o = orders(ib)

0O =

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

orders

1x2 struct array with fields:

Type
EventlID
orderld
contract
order
orderState

0 contains a structure array. The array contains a structure with data for each open
order. The structure fields are:

* Order type

+ Event identifier

* Order identifier

* Contract data

* Order data

* Order status

Retrieve the current status of the order.

o.orderState

ans =
status: "Submitted”

initMargin: "1.7976931348623157E308"
maintMargin: "1.7976931348623157E308"

orderState is a structure with fields corresponding to the status of the order. The fields
are order status, initial margin, and maintenance margin. For details on these fields and
the additional fields in orderState, see Interactive Brokers API Reference Guide.

Close the IB Trader Workstation connection.
close(ib)
Request Open Order Data From All Clients

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

5-253

http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

5-254

ib = ibtws("",7496);

Create the IB Trader Workstation IContract object ibContract. Here, this object
describes a security with these property values:

* Google symbol

* Stock security type

+ Aggregate exchange

* Primary exchange

+ USD currency

EX is a sample primary exchange name. Substitute your primary exchange name in
ibContract.primaryExchange.

ibContract = ib.Handle.createContract;
ibContract.symbol = "GO0OG";
ibContract.secType = "STK";
ibContract.exchange = "SMART";
ibContract.primaryExchange = "EX";
ibContract.currency = "USD";

Create the IB Trader Workstation 10rder object ibOrder. Here, this object describes a
limit order to sell two shares with a limit price of $590.

ibOrder = ib.Handle.createOrder;
ibOrder.action = "SELL";
ibOrder.totalQuantity = 2;
ibOrder.orderType = "LMT"
ibOrder.ImtPrice = 590;

For details about the 1Contract and 10rder objects, see Interactive Brokers API
Reference Guide.

Create a unique order identifier id.
id = orderid(ib);
Execute the order using:

+ IB Trader Workstation connection ib
+ IB Trader Workstation IContract object ibContract
+ IB Trader Workstation 10rder object ibOrder

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

orders

d

Unique order identifier id

= createOrder(ib, ibContract, ibOrder, id);

Retrieve order information o from all clients by setting client to false.

orders(ib,false)

1x2 struct array with fields:

Type
EventlID
orderld
contract
order
orderState

0 contains a structure array. The array contains a structure with data for each open
order. The structure fields are:

Order type
Event identifier
Order identifier
Contract data
Order data

Order status

Retrieve the current status of the order.

o.orderState

ans =

status: "Submitted”
initMargin: "1.7976931348623157E308"
maintMargin: "1.7976931348623157E308"

orderState is a structure with fields corresponding to the status of the order. The fields
are order status, initial margin, and maintenance margin. For details on these fields and
the additional fields in orderState, see Interactive Brokers API Reference Guide.

5-255

http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

5-256

Close the IB Trader Workstation connection.
close(ib)
Request Open Order Data Using an Event Handler

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

ib = ibtws("",7496);

Create the IB Trader Workstation IContract object ibContract. Here, this object
describes a security with these property values:

* Google symbol

+ Stock security type
+ Aggregate exchange
* Primary exchange

+ USD currency

EX is a sample primary exchange name. Substitute your primary exchange name in
ibContract.primaryExchange.

ibContract = ib.Handle.createContract;
ibContract.symbol = "GOOG";
ibContract.secType = "STK";
ibContract.exchange = "SMART";
ibContract.primaryExchange = "EX";
ibContract.currency = "USD";

Create the IB Trader Workstation 10rder object ibOrder. Here, this object describes a
limit order to sell two shares with a limit price of $590.

ibOrder = ib.Handle.createOrder;
ibOrder.action = "SELL";
ibOrder.totalQuantity = 2;
ibOrder.orderType = "LMT"
ibOrder.ImtPrice = 590;

For details about the 1Contract and 10rder objects, see Interactive Brokers API
Reference Guide.

Create a unique order identifier id.

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

orders

id = orderid(ib);
Execute the order using:

+ IB Trader Workstation connection ib
+ IB Trader Workstation IContract object ibContract
+ IB Trader Workstation 10rder object ibOrder

* Unique order identifier id

d = createOrder(ib, ibContract, ibOrder, id);

Retrieve order information from all clients by setting client to false and
using the sample event handler function ibExampleEventHandler. Use
ibExampleEventHandler or write a custom event handler function.

o orders(ib,false,@ibExampleEventHandler)

o =
L1
Columns 1 through 4
[1x1 COM.TWS_TwsCtrl_1] [101] [56947638] [1x1 Interface.Tws_ActiveX_Contr
Columns 5 through 6
[1x1 Interface.Tws_ActiveX_Control_module.l10rder] [1x1 Interface.Tws_ActiveX_Col
Columns 7 through 8
[1x1 struct] "openOrderEx*®

O contains an empty double because the event handler 1bExampleEventHandler
processes the output data.

ibExampleEventHandler displays the output data in the Command Window. Here, IB
Trader Workstation returns:

* Interactive Brokers ActiveX object
+ Event identifier

+ Unique order identifier

5-257

5 Functions — Alphabetical List
P

5-258

* IB Trader Workstation IContract object

+ IB Trader Workstation 10rder object

* IB Trader Workstation 10rderState object

* Structure that repeats the contents of the columns

* Request type

For details about this data, see Interactive Brokers API Reference Guide.

Close the IB Trader Workstation connection.
close(ib)

. “Create and Manage an Interactive Brokers Order” on page 4-26

Input Arguments

ib — IB Trader Workstation connection

connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection

object created using ibtws.

client — Client flag
true (default) | false

Client flag, specified as a logical. true denotes returning data from the current client
only. False denotes returning data from all clients.

Data Types: logical

eventhandler — Event handler
function handle | character vector

Event handler, specified as a function handle or a character vector to identify an event
handler function that processes the returned data. Use the sample event handler or write
a custom event handler function. For details, see “Writing and Running Custom Event
Handler Functions with Interactive Brokers” on page 1-28.

Example: @eventhandler

Data Types: function_handle | char

http://www.interactivebrokers.com/en/software/api/api.htm

orders

Output Arguments

0 — Interactive Brokers open order data
structure | double

Interactive Brokers open order data, returned as a structure or an empty double. The
structure contains these fields:

* Order type

+ Event identifier

* Order identifier

* Contract data

* Order data

* Order status

When using an event handler function, 0 is an empty double.

More About
Tips

* 1bBui ItInErrMsg appears in the MATLAB workspace. Check the status of
connection and function execution by displaying the contents of this variable.
ibBui ItInErrMsg contains messages related to:

+ Connection
+ Information resulting from executing functions

Errors

* Executing orders multiple times using the same IB Trader Workstation connection
can cause this kind of warning message: Warning: Cannot unregister ‘openOrderEx’.
Invalid event name/handler combination. To fix this warning, close the IB Trader
Workstation connection and create a new connection using I1btws.

. “Workflow for Interactive Brokers” on page 2-6

. “Writing and Running Custom Event Handler Functions with Interactive Brokers”
on page 1-28

. Interactive Brokers API Reference Guide

5-259

http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

See Also

close | createOrder | executions | getdata | history | ibtws | orderid |
timeseries

Introduced in R2015a

5-260

portfolio

portfolio

Retrieve current Interactive Brokers portfolio data

Syntax

p = portfolio(ib)

p = portfolio(ib,acctno)

p = portfolio(ib,acctno,eventhandler)
Description

p = portfolio(ib) retrieves current Interactive Brokers portfolio data for the active
account number using the IB Trader Workstation connection ib.

p = portfolio(ib,acctno) retrieves current Interactive Brokers portfolio data using
the account number acctno.

p = portfolio(ib,acctno,eventhandler) retrieves current Interactive Brokers
portfolio data using an event handler function eventhandler. Use the sample event
handler ibExampleEventHandler or write a custom event handler function.

Examples

Retrieve Current Porifolio Data

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

ib = ibtws("",7496);
Retrieve current Interactive Brokers portfolio data using ib.
p = portfolio(ib)

p:

5-261

5 Functions — Alphabetical List

Type: {5x1 cell}
Source: {5x1 cell}
EventID: {5x1 cell}
contract: {6x1 cell}
position: {5x1 cell}
marketPrice: {5x1 cell}
marketValue: {5x1 cell}
averageCost: {6x1 cell}
unrealizedPNL: {5x1 cell}
realizedPNL: {5x1 cell}
accountName: {56x1 cell}

p is a structure that contains these fields:

+ Event type

+ Interactive Brokers ActiveX object

* Event identifier

+ Contract details

* Number of shares for each contract

+ Price of the shares for each contract

* Number of shares multiplied by the price of the shares for each contract
+ Average price when the shares are purchased for each contract

+ Unrealized profit and loss for each contract

+ Actual profit and loss for each contract

* Account number

5x1 means there are five contracts in this portfolio. For details about this data, see
Interactive Brokers API Reference Guide.

Display the market price for each contract in the portfolio.
p-marketPrice
ans =

[8.60]
[582.95]
[591.79]
[188.44]
[42.24]

5-262

http://www.interactivebrokers.com/en/software/api/api.htm

portfolio

Close the IB Trader Workstation connection.
close(ib)

Retrieve Current Portfolio Data Using the Account Number

Create the IB Trader Workstation connection ib on the local machine using port number

7496.
ib = ibtws("",7496);

Retrieve current Interactive Brokers portfolio data using b and account number
acctno.

acctno = "DU111111";

p portfolio(ib,acctno)

p:

Type: {6x1 cell}
Source: {5x1 cell}
EventlID: {5x1 cell}
contract: {5x1 cell}
position: {5x1 cell}
marketPrice: {5x1 cell}
marketValue: {5x1 cell}
averageCost: {5x1 cell}
unrealizedPNL: {5x1 cell}
realizedPNL: {5x1 cell}
accountName: {5x1 cell}

p is a structure that contains these fields:

+ Event type

+ Interactive Brokers ActiveX object

+ Event identifier

+ Contract details

* Number of shares for each contract

* Price of the shares for each contract

* Number of shares multiplied by the price of the shares for each contract

* Average price when the shares are purchased for each contract

5-263

5 Functions — Alphabetical List
P

5-264

+ Unrealized profit and loss for each contract
* Actual profit and loss for each contract

* Account number

5x1 means there are five contracts in this portfolio. For details about this data, see
Interactive Brokers API Reference Guide.

Display the market price for each contract in the portfolio.
p-marketPrice
ans =

[8.60]

[582.95]

[591.79]

[188.44]
[42.24]

Close the IB Trader Workstation connection.
close(ib)
Retrieve Current Portfolio Data Using an Event Handler

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

ib = ibtws("",7496);

Retrieve current Interactive Brokers portfolio data using ib, account number acctno,
and sample event handler ibExampleEventHandler. Use ibExampleEventHandler or
write a custom event handler function.

acctno = "DU111111°;

portfolio(ib,acctno,@ibExampleEventHandler)

p
p:
L1

Columns 1 through 5

http://www.interactivebrokers.com/en/software/api/api.htm

portfolio

[1x1 COM.TWS_TwsCtrl_1] [103] [1x1 Interface.Tws_ActiveX_Control_module. 1Con

Columns 6 through 12

[515.10] [8.22] [21.68] [o01 "DU111111"

[1x1 struct]

"updatePortf

p is an empty double because ibExampleEventHandler displays the current Interactive

Brokers portfolio data for each security in the Command Window.

The columns are:

For details about this data, see Interactive Brokers API Reference Guide.

Interactive Brokers ActiveX object

Event identifier

IB Trader Workstation IContract object
Number of shares

Price of the shares

Number of shares multiplied by the price of the shares
Average price when the shares are purchased
Unrealized profit and loss

Actual profit and loss

Account number

Structure that repeats the contents of the columns

Event type

Close the IB Trader Workstation connection.

close(ib)

“Create and Manage an Interactive Brokers Order” on page 4-26

Input Arguments

ib — IB Trader Workstation connection
connection object

5-265

http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

5-266

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

acctno — Account number
character vector

Account number, specified as a character vector that identifies the Interactive Brokers
account number.

Example:

Data Types: char

eventhandler — Event handler
function handle | character vector

Event handler, specified as a function handle or a character vector to identify an event
handler function that processes the returned data. Use the sample event handler or write
a custom event handler function. For details, see “Writing and Running Custom Event
Handler Functions with Interactive Brokers” on page 1-28.

Example: @eventhandler

Data Types: function_handle | char

Output Arguments

p — Interactive Brokers porifolio data
structure | double

Interactive Brokers portfolio data, returned as a structure. The structure contains these
fields. When using an event handler function, p is an empty double.

Field Description

Type Interactive Brokers event type name

Source Interactive Brokers ActiveX object

EventlID Number that identifies the event type

contract Structure that contains details for each
contract in the portfolio

portfolio

Field Description

position Number of shares for each contract in the
portfolio

marketPrice Price of the shares for each contract in the
portfolio

marketValue Number of shares multiplied by the price of

the shares for each contract in the portfolio

averageCost Average price when the shares are
purchased for each contract in the portfolio

unreal izedPNL Unrealized profit and loss for each contract
in the portfolio

realizedPNL Actual profit and loss for each contract in
the portfolio

accountName Account number

More About
Tips

* ibBuiltInErrMsg appears in the MATLAB workspace. Check the status of
connection and function execution by displaying the contents of this variable.
ibBui I'tInErrMsg contains messages related to:

+ Connection

Information resulting from executing functions

Errors
. “Workflow for Interactive Brokers” on page 2-6
. “Writing and Running Custom Event Handler Functions with Interactive Brokers”
on page 1-28

. Interactive Brokers API Reference Guide

See Also

close | createOrder | executions | getdata | history | ibtws | marketdepth
| timeseries

5-267

http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

Introduced in R2015a

5-268

realtime

realtime

Request Interactive Brokers real-time data

Syntax

tickerid realtime(ib, ibContract,)
tickerid = realtime(ib, ibContract,f,eventhandler)

Description

tickerid = realtime(ib, ibContract,) requests Interactive Brokers real-time
data using IB Trader Workstation connection ib, IB Trader Workstation 1Contract
object ibContract, and Interactive Brokers fields F.

tickerid = realtime(ib, ibContract, f,eventhandler) requests Interactive
Brokers real-time data using an event handler function eventhandler. Use the sample
event handler ibExampleEventHandler or write a custom event handler function.

Examples

Request Real-Time Data

To request real-time data, set up the IB Trader Workstation connection ib using
ibtws. Create an IB Trader Workstation 1Contract object ibContract as shown
in “Request Interactive Brokers Real-Time Data” on page 4-35. An IContract object
is an Interactive Brokers object for containing the data about a security to process
transactions. For details about creating this object, see Interactive Brokers API
Reference Guide.

Set the Interactive Brokers field F to 233 to denote the tick type for RTVolume.
RTVolume contains these fields:

+ Last trade price

+ Last trade size

5-269

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

* Last trade time

* Total volume

* Volume weighted average price (VWAP)
* Single trade flag

For details about RTVolume, see Interactive Brokers API Reference Guide.
Request real-time data using ib, ibContract, and f.
f = "233";

tickerid = realtime(ib, ibContract,f)

tickerid
1
tickerid returns a number for tracking the real-time data request.

The real-time data is returned in the MATLAB workspace variable
ibBuiltInRealtimeData.

Display this real-time data.
ibBuiltlnRealtimeData

ibBuiltInRealtimeData =

id: 1
BID_PRICE: 584.65

BID_SIZE: 1
ASK_PRICE: 585.80

ASK_SIZE: 1

LAST_PRICE: 585
LAST_SIZE: 1
VOLUME: 11611

The structure ibBui ltInRealtimeData contains these fields:

* Real-time request identifier
* Bid price

+ Bid size

5-270

http://www.interactivebrokers.com/en/software/api/api.htm

realtime

* Ask price

+ Ask size

* Last price

* Last size

* Volume

The id field is a number that tracks the real-time data request for IB Trader
Workstation IContract object ibContract. When you create multiple contracts, each

real-time data display has a different value for the id field that corresponds to a specific
contract.

Cancel the real-time market data request using tickerid.

ib.Handle.cancelMktData(tickerid)

Close the IB Trader Workstation connection.
close(ib)

Request Real-Time Data Using an Event Handler

To request real-time data, set up the IB Trader Workstation connection ib using
ibtws. Create an IB Trader Workstation 1Contract object ibContract as shown
in “Request Interactive Brokers Real-Time Data” on page 4-35. An IContract object
is an Interactive Brokers object for containing the data about a security to process
transactions. For details about creating this object, see Interactive Brokers API
Reference Guide.

Set the field F to the tick type for RTVolume 233. RTVolume contains:

* Last trade price

* Last trade size

* Last trade time

* Total volume

* Volume weighted average price (VWAP)
+ Single trade flag

For details about RTVolume, see Interactive Brokers API Reference Guide.

5-271

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

f = "233";

Request real-time data using ib, ibContract, and f. Use the sample event handler
ibExampleEventHandler to display the real-time data in the Command Window.

tickerid = realtime(ib, ibContract,f, ...
@ibExampleEventHandler)

tickerid

1
[1x1 COM.TWS_ TwsCtrl_1] [1] [1] [1] [585.50] [11 [1x1 struct]

[1x1 COM.TWS_TwsCtrl_1] [2] [1] [O] [1] [1x1 struct] "tickSize*

tickerid returns a number for tracking the real-time data request.

After the tickerid, ibExampleEventHandler streams real-time data to the Command
Window. Each line is a type of tick. Here, there is a price tick and size tick.

For a price tick, the IB Trader Workstation returns:

* Interactive Brokers ActiveX object

+ Event identifier

* Request identifier

* Tick type

* Price

+ Automatic execution flag

+ Structure that repeats the contents of the columns

+ Event type
For details about this data, see Interactive Brokers API Reference Guide.

Cancel the real-time market data request using tickerid.

ib.Handle.cancelMktData(tickerid)

Close the IB Trader Workstation connection.

5-272

http://www.interactivebrokers.com/en/software/api/api.htm

realtime

close(ib)

. “Request Interactive Brokers Real-Time Data” on page 4-35

Input Arguments

ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

ibContract — IB Trader Workstation contract
IContract object | cell array

IB Trader Workstation contract, specified as an IB Trader Workstation 1Contract
object or a cell array for multiple IB Trader Workstation 1Contract objects. This
object is the instrument or security used in the order transaction. Create this object
by calling the Interactive Brokers API function createContract. For details about
createContract and the attributes that you can set, see Interactive Brokers API
Reference Guide.

Data Types: cell

f — Interactive Brokers fields
character vector | cell array of character vectors

Interactive Brokers fields, specified as a character vector or a cell array of character
vectors. These fields correspond to numeric identifiers that specify the Interactive
Brokers generic market data tick types. For details, see Interactive Brokers API
Reference Guide.

Data Types: char | cell

eventhandler — Event handler
function handle | character vector

Event handler, specified as a function handle or a character vector to identify an event
handler function that processes the returned data. Use the sample event handler or write
a custom event handler function. For details, see “Writing and Running Custom Event
Handler Functions with Interactive Brokers” on page 1-28.

5-273

http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm
http://www.interactivebrokers.com/en/software/api/api.htm

5 Functions — Alphabetical List
P

Example: @eventhandler

Data Types: function_handle | char

Output Arguments

tickerid — Interactive Brokers market request identifier
double

Interactive Brokers market request identifier, specified as a double for tracking and
canceling the market data request. tickerid is a scalar for one Interactive Brokers
contract and a vector of scalars for multiple contracts.

More About
Tips
* ibBuiltInErrMsg appears in the MATLAB workspace. Check the status of
connection and function execution by displaying the contents of this variable.
ibBui I'tInErrMsg contains messages related to:
Connection

Information resulting from executing functions

* Errors
. “Workflow for Interactive Brokers” on page 2-6
. “Writing and Running Custom Event Handler Functions with Interactive Brokers”
on page 1-28

. Interactive Brokers API Reference Guide

See Also

close | createOrder | history | ibtws | timeseries

Introduced in R2015a

5-274

http://www.interactivebrokers.com/en/software/api/api.htm

fixflyer

fixflyer

FIX Flyer connection

Description
The FixFlyer function creates a FixFlyer object. The FixFlyer object represents

a FIX Flyer Engine connection. After you create a FixFlyer object, you can send FIX
messages and retrieve order status and information using the object functions.

Create Object

Syntax

Description

c = Fixflyer(username,password, ipaddress,port) creates a connection c to the
FIX Flyer Engine with user name, password, IP address, and port number.

c = FixFflyer(username,password, ipaddress,port,orderport) specifies a port
number orderport for order information retrieval.

Input Arguments

username — FIX Flyer user name
character vector

FIX Flyer user name, specified as a character vector.
Example: "guest*®

Data Types: char

password — FIX Flyer password
character vector

5-275

5 Functions — Alphabetical List
P

5-276

FIX Flyer password, specified as a character vector.
Data Types: char

ipaddress — IP address
character vector

IP address, specified as a character vector to indicate the IP address of the computer
where the FIX Flyer Engine is running.

Example: "127.0.0.1"

Data Types: char

port — Port number
scalar

Port number, specified as a scalar to indicate the port number on the computer where the
FIX Flyer Engine is running.

Example: 12001

Data Types: double

orderport — Order information port number
scalar

Order information port number, specified as a scalar to indicate the port number on the
computer where the FIX Flyer Engine is running. You can retrieve order information for
active and closed orders by creating a FIX Flyer Engine connection using orderport.

Example: 13001
Data Types: double

Properties

User — FIX Flyer user name
character vector

FIX Flyer user name, specified as a character vector.

Example: "guest*

fixflyer

Data Types: char

Ipaddress — IP address
character vector

IP address of the computer where the FIX Flyer Engine is running, specified as a
character vector.

Example: "127.0.0.1"

Data Types: char

Port — Port number
double

Port number of the computer where the FIX Flyer Engine is running, specified as a
double.

Example: 12001
Data Types: double

RestPort — Order information port number
double

Order information port number of the computer where the FIX Flyer Engine is running,
specified as a double. This property appears only when you run fFixflyer with the
orderport input argument.

Example: 13001
Data Types: double

FlyerApplicationManager — FIX Flyer application
FIX Flyer application manager object

FIX Flyer application, specified as a FIX Flyer application manager object.

SessionlD — FIX Flyer session identifier
double

FIX Flyer session identifier, specified as a double.

Data Types: double

5-277

5 Functions — Alphabetical List
P

Obiject Functions

close Close FIX Flyer connection

sendMessage Send FIX message to FIX Flyer Engine

orderInfo Retrieve FIX Flyer order status and
information

addListener Add event handling listener to FIX Flyer
connection

Examples

Create FIX Flyer Engine Connection

To create a FIX Flyer connection for the first time, add the JAR file Fix-Flyer. jar to
the static Java class path. For details, see “Installation” on page 1-3.

Import the FIX Flyer Java libraries.

import flyer.apps.*;
import flyer.apps.FlyerApplicationManagerFactory.>;
import flyer.core._.session.*;

Create the FIX Flyer Engine connection C using these arguments:

* User name username
+ Password password

* IP address ipaddress
* Port number port

username user”®;
password "pwd*;
ipaddress = "127.0.0.17;
port = 7002;

c = Fixflyer(username,password, ipaddress,port)

Cc =
fixFlyer with properties:

User: "user”

5-278

fixflyer

Ipaddress: "127.0.0.1"
Port: 7002.00
FlyerApplicationManager: [1x1 flyer.apps-FlyerApplicationManager]
SessionliD: []

c is the FIX Flyer Engine connection object with these properties:

* User name

+ TP address

* Port number

* FIX Flyer application manager instance

+ FIX Flyer session identifier

Close the FIX Flyer connection.

close(c)
Create FIX Flyer Engine Connection for Order Information Retrieval

To create a FIX Flyer connection for the first time, add the JAR file Fix-Flyer.jar to
the static Java class path. For details, see “Installation” on page 1-3.

Import the FIX Flyer Java libraries.

import flyer._apps.™*;
import flyer.apps.FlyerApplicationManagerFactory.>;
import flyer.core.session.*;

Create the FIX Flyer Engine connection € using these arguments:

* User name username

+ Password password

+ IP address ipaddress

* Port number port

* Order information port number orderport
username "guest”;

password "guest”;

ipaddress = “example.fixcomputeserver._.com”;

port = 12001;
orderport = 13001;

5-279

5 Functions — Alphabetical List
P

5-280

(e}
1l

FixFflyer(username,password, ipaddress, port,orderport)

Tfixflyer with properties:

User: "guest”
Ipaddress: “example.fixcomputeserver.com®
FIXPort: 12001
RestPort: 13001
FlyerApplicationManager: [1x1 flyer.apps.FlyerApplicationManager]
SessionliD: []

c is the FIX Flyer Engine connection object with these properties:

* User name

+ IP address

* Port number

* Order information port number

+ FIX Flyer application manager instance

+ FIX Flyer session identifier
To retrieve order information for active and closed orders, see order Info.

Close the FIX Flyer connection.
close(c)

. “Create an Order Using FIX Flyer” on page 1-20

More About
. “Workflow for FIX Flyer” on page 2-10

External Websites
. FIX Flyer Download Portal
. FIX Trading Community

Introduced in R2015b

http://downloads.fixflyer.com
http://www.fixtradingcommunity.org/

addListener

addListener

Add event handling listener to FIX Flyer connection

Syntax

Ih = addListener(c, listener)

Description

Ih = addListener(c, listener) adds the event handling listener 1 istener
to the FIX Flyer Engine connection c. Use the sample event handling listener
fixExampleListener or write a custom event handling listener function.

Examples

Listen for FIX Flyer Event Data
Create the FIX Flyer Engine connection C using these arguments:

+ User name username
+ Password password
+ IP address ipaddress

* Port number port

username = "user”;
password = "“pwd";
ipaddress = "127.0.0.17;
port = 7002;

c = fixflyer(username,password, ipaddress,port);
Add the FIX Flyer event listener to the FIX Flyer Engine connection c. To listen for and

display the FIX Flyer Engine event data in the Workspace browser, use the sample event
handling listener FixExampleListener. To access the code for the listener, enter edit

5-281

5 Functions — Alphabetical List
P

5-282

FixExampleListener.m. Or, to process the event data in another way, you can write a
custom event handling listener function. For details, see “Create Functions in Files”.

FixExampleListener handles the FIX Flyer Engine events. e denotes these events.
You can specify e as any letter.

Ih = addListener(c,@(~,e)fixExampleListener(e,c));
TixExampleListener returns a handle to the listener Ih.

When events occur, FixExampleListener returns event data to objects in the MATLAB
Workspace. To view event data, double-click the object. The Variables dialog box displays
the data in the object.

Close the FIX Flyer Engine connection.
close(c)

. “Create an Order Using FIX Flyer” on page 1-20

Input Arguments

¢ — FIX Flyer Engine connection
Tixflyer object

FIX Flyer Engine connection, specified as a FixFlyer object.

listener — Listener event handler
function

Listener event handler, specified as a function handle to listen for FIX Flyer Engine
event data. You can modify the existing listener function or define your own. You can find
the code for the existing listener function in the FixExampleListener .m file.

Data Types: function_handle

Output Arguments

Ih — Listener handle
object

addListener

Listener handle, returned as a handle to a FIX Flyer listener object.
More About

“Workflow for FIX Flyer” on page 2-10

See Also

close | Fixflyer | sendMessage

Introduced in R2015b

5-283

5 Functions — Alphabetical List
P

5-284

sendMessage

Send FIX message to FIX Flyer Engine

Syntax

status = sendMessage(c, Fixmsg)

Description

status = sendMessage(c, Fixmsg) sends the FIX message Fixmsg using the FIX
Flyer Engine connection c.

Examples

Send FIX Message

Create the FIX Flyer Engine connection C using these arguments:

* User name username
+ Password password
* IP address ipaddress

* Port number port

username = “user-;
password = "pwd”;
ipaddress = "127.0.0.1"7;
port = 7002;

c = Fixflyer(username,password, ipaddress,port);

Add the FIX Flyer event listener to the FIX Flyer Engine connection c. To listen for and
display the FIX Flyer Engine event data in the Workspace browser, use the sample event
handling listener FixExampleListener. To access the code for the listener, enter edit

sendMessage

FixExampleListener.m. Or, to process the event data in another way, you can write a
custom event handling listener function. For details, see “Create Functions in Files”.

TixExampleListener handles the FIX Flyer Engine events. € denotes these events
You can specify e as any letter.

lh = addListener(c,@(~,e)FfixExampleListener(e,c));
TixExampleListener returns a handle to the listener Ih.

Subscribe to FIX sessions and set up the FIX Flyer Application Manager. Register with
the FIX Flyer session. Connect the FIX Flyer Application Manager to the FIX Flyer

Engine and start the internal receiving thread.
c.SessionlD = flyer.core.session.SessionID("Alpha”, ...

"Beta®,"FIX.4.4%);
c.FlyerApplicationManager .setLoadDefaultDataDictionary(false);
c.FlyerApplicationManager.registerFIXSession(..- .

flyer._apps.FixSessionSubscription(...

c.SessionlD, true,0));
c.FlyerApplicationManager.connect;
c.FlyerApplicationManager.start;

Create a FIX message using a table Fixtable. This table contains two FIX messages.
The first row in the table represents a sell side transaction for 100 shares of symbol ABC.
The order type is a previously quoted order. The order handling instruction is a private
automated execution. The order transaction time is the current moment. The second row
in the table has the same order field variables except that the order identifier is unique
across orders. The FIX protocol version is 4.4.

Ffixtable = table({"FIX_.4._47;"FIX. 4.4}, ...
{°3387;"339"},{"2";"2"}, ...
{datestr(now) ;datestr(now)}, - - .
{°D";"D"},{"ABC";"ABC"}, - ..
{71717}, {"D";"D"},{"100"; 100"}, . ..
"VariableNames® ,{"BeginString*
"CLOrdld" "Side" "TransactTime-"
"OrdType® "Symbol*
"HandlInst® “MsgType® "OrderQty"}):;

Send the FIX message using the FIX message Fixtable.
status = sendMessage(c, fixtable)

status =

5-285

5 Functions — Alphabetical List
P

status contains the FIX Flyer Engine message status for each FIX message sent. If the
FIX message is sent successfully, status contains a logical zero. status has an entry
for each FIX message in Fixtable.

The MATLAB Workspace variable FixResponseStruct contains the returned FIX
messages from the FIX Flyer Engine.

Close the FIX Flyer Engine connection.
close(c)

. “Create an Order Using FIX Flyer” on page 1-20

Input Arguments

¢ — FIX Flyer Engine connection
fixFlyer object

FIX Flyer Engine connection, specified as a FixFlyer object.

fixmsg — FIX message
table | structure

FIX message, specified as a table or structure.

Example: fixtable = table({"FIX.4.4";"FIX.4.4"}, ...
{"338";"339"},{"2"; 2"}, ...

{datestr(now) ;datestr(now)}, - ..
{"D";"D"},{"ABC";"ABC"}, .-
{17;71"},{"D";"D"},{"1007;"100"}, ...
"VariableNames" ,{"BeginString”

"CLOrdId" "Side® "TransactTime®

"OrdType® “Symbol*

"HandlInst® “MsgType® "OrderQty*});

Data Types: table | struct

Output Arguments

status — Send message status
logical

5-286

sendMessage

Send message status, returned as an array of logical zeroes or ones. The array contains
an entry for each FIX message in Fixmsg. If a FIX message is sent successfully, status
contains a zero. Otherwise, status contains a one.

More About

. “Workflow for FIX Flyer” on page 2-10
. FIX Trading Community

See Also

addListener | close | fixflyer

Introduced in R2015b

5-287

http://www.fixtradingcommunity.org/

5 Functions — Alphabetical List
P

orderinfo

Retrieve FIX Flyer order status and information

Syntax

o0 = orderlInfo(c)

o = orderlInfo(c,status)

o = orderlInfo(c, infoterm, infovalue)

Description

o = orderlInfo(c) returns order information for all orders associated with the FIX
Flyer connection c.

o = orderiInfo(c,status) filters orders by the order status.

o = orderlInfo(c, infoterm, infovalue) filters orders by a specified term infoterm
and value infovalue.

Examples

Return Order Information for All Orders
Create the FIX Flyer Engine connection € using these arguments:

+ User name username
+ Password password

+ IP address ipaddress
* Port number port

* Order information port number orderport

username
password

"guest”;
"guest”;

5-288

orderlnfo

ipaddress = “example.fixcomputeserver._.com”;
port = 12001;
orderport = 13001;

c = fixflyer(username,password, ipaddress,port,orderport);

Add the FIX Flyer event listener to the FIX Flyer Engine connection c. To listen for and
display the FIX Flyer Engine event data in the Workspace browser, use the sample event
handling listener FixExampleListener. To access the code for the listener, enter edit
FixExampleListener.m. Or, to process the event data in another way, you can write a
custom event handling listener function. For details, see “Create Functions in Files”.

FixExampleListener handles the FIX Flyer Engine events. e denotes these events.
You can specify e as any letter.

Ih = addListener(c,@(~,e)fixExampleListener(e,c));
fixExampleListener returns a handle to the listener Ih.

Subscribe to FIX sessions and set up the FIX Flyer Application Manager. Register with
the FIX Flyer session. Connect the FIX Flyer Application Manager to the FIX Flyer
Engine and start the internal receiving thread.

c.SessionlD = flyer.core.session.SessionID("Alpha”, ...

“Beta®,"FIX.4.4%);
-FlyerApplicationManager.setLoadDefaultDataDictionary(false);
_FlyerApplicationManager.registerFIXSession(...

flyer.apps.FixSessionSubscription(...
c.SessionlD, true,0));

o0

c.FlyerApplicationManager.connect;
c.FlyerApplicationManager.start;

Create a structure orderStruct to contain the FIX message for a new order. This order
is a market order to sell 1000 IBM shares.

orderStruct.BeginString{l,1} = "FIX.4.4";
orderStruct.CLOrdId{1,1} = "3387;
orderStruct.Side{1,1} = "27;
orderStruct.TransactTime{l,1} = datestr(now);
orderStruct.OrdType{1,1} = "D";
orderStruct.Symbol{1,1} = "IBM";
orderStruct_HandlInst{1,1} = "1%;
orderStruct.MsgType{1,1} = "D";
orderStruct.OrderQty{1,1} = "1000";
orderStruct.HeaderFields{1,1} = {"OnBehalfOfCompID", "TRADER"};
orderStruct.BodyFields{1,1} = {"NoPartylDs","3"; -

5-289

5 Functions — Alphabetical List
P

"PartylID","1"; ..
"PartyRole", 'BBVA"
"PartylID","1"; ..
"PartyRole", 'CVGX"
"PartylID","1"; ..
"PartyRole", "GSAM* }

Send FIX message using the FIX Flyer connection and the FIX message.

status = sendMessage(c,orderStruct);

Return and display the order information o for all orders.

o = orderiInfo(c);
openvar("o")

The Variables editor displays the contents of 0.

Close the FIX Flyer Engine connection.

close(c)

Return Order Information for All Open Orders

Create the FIX Flyer Engine connection € using these arguments:

* User name username
+ Password password

+ IP address ipaddress
* Port number port

* Order information port number orderport

username "guest”;

password "guest”;

ipaddress = "example.fixcomputeserver.com”;
port = 12001;

orderport = 13001;

= FixFlyer(username, password, ipaddress,port,orderport);

Add the FIX Flyer event listener to the FIX Flyer Engine connection c. To listen for and
display the FIX Flyer Engine event data in the Workspace browser, use the sample event

5-290

orderlnfo

handling listener FixExampleListener. To access the code for the listener, enter edit
fixExampleListener.m. Or, to process the event data in another way, you can write a

custom event handling listener function. For details, see “Create Functions in Files”.

FixExampleListener handles the FIX Flyer Engine events. e denotes these events.
You can specify e as any letter.

Ih = addListener(c,@(~,e)fixExampleListener(e,c));

FixExampleListener returns a handle to the listener Ih.

Subscribe to FIX sessions and set up the FIX Flyer Application Manager. Register with
the FIX Flyer session. Connect the FIX Flyer Application Manager to the FIX Flyer
Engine and start the internal receiving thread.

c.SessionlD = flyer.core.session.SessionID("Alpha”, ...

"Beta®,"FI1X.4.4%);

c.FlyerApplicationManager.setlLoadDefaul tDataDictionary(false);
c.FlyerApplicationManager.registerFIXSession(...

flyer.apps.FixSessionSubscription(...
c.SessionlD, true,0));

c.FlyerApplicationManager.connect;
c.FlyerApplicationManager.start;

Create a structure orderStruct to contain the FIX message for a new order. This order
is a market order to sell 1000 IBM shares.

orderStruct.BeginString{l1,1} = "FIX.4.4";
orderStruct.CLOrdld{1,1} = "338";
orderStruct.Side{1,1} = "2°;
orderStruct.TransactTime{l,1} = datestr(now);
orderStruct.OrdType{1,1} = "D";
orderStruct.Symbol{1,1} = "IBM";
orderStruct.HandlInst{1,1} = "1°;
orderStruct.MsgType{1,1} = "D";
orderStruct.OrderQty{1,1} = "1000";

orderStruct.
orderStruct.

HeaderFields{1,1} = {"OnBehalfOfCompID", " TRADER"};

BodyFields{1,1} = {"NoPartylDs","3"; .
"PartylID","1"; ...
"PartyRole”, "BBVA*";
"PartylID","1"; ...
"PartyRole”, "CVGX";
"PartylID","1"; ...
"PartyRole”, "GSAM"};

Send FIX message using the FIX Flyer connection and the FIX message.

5-291

5 Functions — Alphabetical List
P

5-292

status = sendMessage(c,orderStruct);

Return and display the order information o for all open orders.

o = orderiInfo(c, "open”);
openvar(“o")

The Variables editor displays the contents of 0.

Close the FIX Flyer Engine connection.

close(c)
Return Order Information for Specific Symbol
Create the FIX Flyer Engine connection C using these arguments:

* User name username
+ Password password

+ IP address ipaddress
* Port number port

* Order information port number orderport

username "guest”;

password "guest”;

ipaddress = “example.fixcomputeserver._.com”;
port = 12001;

orderport = 13001;

c = fixflyer(username,password, ipaddress,port,orderport);

Add the FIX Flyer event listener to the FIX Flyer Engine connection c. To listen for and
display the FIX Flyer Engine event data in the Workspace browser, use the sample event
handling listener FixExampleListener. To access the code for the listener, enter edit
FixExampleListener.m. Or, to process the event data in another way, you can write a
custom event handling listener function. For details, see “Create Functions in Files”.

fixExampleListener handles the FIX Flyer Engine events. e denotes these events.

You can specify e as any letter.

Ih = addListener(c,@(~,e)fixExampleListener(e,c));

orderlnfo

FfixExampleListener returns a handle to the listener 1h.

Subscribe to FIX sessions and set up the FIX Flyer Application Manager. Register with
the FIX Flyer session. Connect the FIX Flyer Application Manager to the FIX Flyer
Engine and start the internal receiving thread.
c.SessionlD = flyer.core.session.SessionlD("Alpha”, ...

"Beta®,"FIX.4.4%);
c.FlyerApplicationManager.setlLoadDefaul tDataDictionary(false);
c.FlyerApplicationManager.registerFIXSession(...

flyer.apps.FixSessionSubscription(...

c.SessionlD, true,0));

c.FlyerApplicationManager.connect;
c.FlyerApplicationManager.start;

Create a structure orderStruct to contain the FIX message for a new order. This order
is a market order to sell 1000 IBM shares.

orderStruct.BeginString{l,1} = "FIX.4.4";
orderStruct.CLOrdId{1,1} = "3387;
orderStruct.Side{1,1} = "27;
orderStruct.TransactTime{l,1} = datestr(now);
orderStruct.OrdType{1,1} = "D";
orderStruct.Symbol{1,1} = "IBM";
orderStruct.HandlInst{1,1} = "17;
orderStruct.MsgType{1,1} = "D";
orderStruct.OrderQty{1,1} = "1000";
orderStruct.HeaderFields{1,1} = {"OnBehalfOfCompID", "TRADER"};
orderStruct.BodyFields{1,1} = {"NoPartylIDs","3"; ...
"PartylID","1"; ...
"PartyRole","BBVA"; ...
"PartylID","1"; ...
"PartyRole","CVGX"; ...
"PartylID","1"; ...
"PartyRole”, "GSAM"};

Send FIX message using the FIX Flyer connection and the FIX message.

status = sendMessage(c,orderStruct);

Return and display the order information o for transactions of IBM shares.

o = orderiInfo(c, "symbol*,"IBM");
openvar(“o")

The Variables editor displays the contents of 0.

Close the FIX Flyer Engine connection.

5-293

5 Functions — Alphabetical List
P

close(c)

. “Create an Order Using FIX Flyer” on page 1-20

Input Arguments

¢ — FIX Flyer Engine connection
Fixflyer object

FIX Flyer Engine connection, specified as a FixFlyer object.

status — Order status
"all” (default) | "closed” | "open*®

Order status, specified as one of these values. Each value denotes the order information

to return.

Order Status Value Description

"all* All orders
"closed” Closed orders only
"open* Open orders only

Example: 0 = orderiInfo(c, "all*®)

Data Types: char

infoterm — Order information term
"clientorderid”® | "orderstatus”

| "securityid” | "symbol~

Order information term, specified as one of these values. Each value filters the order
information to return.

Specify the corresponding order information term value infovalue.

Valve Description
"clientorderid* Client order identifier
"orderstatus” Order status
"securityid” Security identifier

5-294

orderlnfo

Valve Description

"symbol * Symbol

Example: 0 = orderiInfo(c, "orderstatus”,"1")

Data Types: char

infovalue — Order information term value
character vector

Order information term value, specified as a character vector. This value corresponds to
the specified order information term infoterm.

Example: 0 = orderInfo(c, "orderstatus®,"1")

Data Types: char

Output Arguments

0 — Order information data
structure

Order information data, returned as a structure. The structure contains many fields
where each field is one piece of order information data provided by FIX Flyer.

More About

. “Workflow for FIX Flyer” on page 2-10
. FIX Trading Community

See Also

addListener | fixflyer | sendMessage

Introduced in R2016b

5-295

http://www.fixtradingcommunity.org/

5 Functions — Alphabetical List
P

5-296

close

Close FIX Flyer connection

Syntax

close(c)

Description

close(c) closes the FIX Flyer Engine connection C.

Examples

Close the FIX Flyer Connection

Create the FIX Flyer Engine connection C using these arguments:

* User name username
+ Password password

+ IP address ipaddress
* Port number port

username = "user”;
password = "pwd";
ipaddress = "127.0.0.1%;
port = 7002;

c = fixflyer(username,password, ipaddress,port);
Close the FIX Flyer Engine connection.
close(c)

. “Create an Order Using FIX Flyer” on page 1-20

close

Input Arguments

¢ — FIX Flyer Engine connection
fixFlyer object

FIX Flyer Engine connection, specified as a FixFlyer object.
More About
“Workflow for FIX Flyer” on page 2-10

See Also
FfixfFlyer

Introduced in R2015b

5-297

5 Functions — Alphabetical List
P

fix2struct

Convert FIX message to structure array

Syntax

fixstruct = fix2struct(fixstr)

Description

Fixstruct = fix2struct(Fixstr) converts raw FIX messages in the cell array
Fixstr to a structure array Fixstruct.

Examples

Convert FIX Message to Structure Array

For this example, assume that a counterparty sends you raw FIX messages in Fixstr.
The FIX protocol version is 4.4.

Convert the raw FIX messages in Fixstr to a structure array Fixstruct. There are two
raw FIX messages in Fixstr.

Ffixstruct = fix2struct(fixstr)

Ffixstruct =

BeginString: {2x1 cell}
CIOrdID: {2x1 cell}
Side: {2x1 cell}
TransactTime: {2x1 cell}
OrdType: {2x1 cell}
Symbol: {2x1 cell}
HandlInst: {2x1 cell}
MsgType: {2x1 cell}
OrderQty: {2x1 cell}

The structure array Fixstruct contains a structure for each raw FIX message in
Fixstr. The structure fields correspond to the FIX tags in the raw FIX message.

5-298

fix2struct

Display the order type for each FIX message.
fixstruct.OrdType
ans =

D"
D"

Both FIX messages specify previously quoted orders.

Input Arguments

fixstr — FIX message
cell array

FIX message, specified as a cell array of one or more raw FIX messages.
Example:

Data Types: cell

Output Arguments

fixstruct — FIX message
structure

FIX message, specified as a structure array containing the converted raw FIX messages
in Fixstr. The structure fields and values correspond to the FIX tag names and values
in the raw FIX message.

More About

. “Workflow for FIX Flyer” on page 2-10
. FIX Trading Community

See Also
fix2table | fixFlyer | struct2fix | table2fix

5-299

http://www.fixtradingcommunity.org/

5 Functions — Alphabetical List
P

Introduced in R2015b

5-300

fix2table

fix2table

Convert FIX message to table

Syntax

fixtable = fix2table(fixstr)

Description

fixtable = fix2table(fixstr) converts raw FIX messages in the cell array Fixstr
to a table Fixtable.

Examples

Convert FIX Message to Table

For this example, assume that a counterparty sends you raw FIX messages in Fixstr.
The FIX protocol version is 4.4.

Convert the raw FIX messages in Fixstr to a table Fixtable. There are two raw FIX
messages in Fixstr.

fixtable = fix2table(fixstr)

fixtable =
BeginString MsgType OnBehal fOfCompID ClordID Side TransactTime
"FIX.4.4" *D*" "TRADER* "338" "2- "22-Mar-2016 11:3:¢
"FIX.4.4" *D*" "TRADER* "339" "2- "22-Mar-2016 11:3¢

5-301

5 Functions — Alphabetical List
P

5-302

The table Fixtable contains a row for each raw FIX message in fFixstr. The variable
names in the table correspond to the FIX tags in the raw FIX message.

Input Arguments

fixstr — FIX message

cell array

FIX message, specified as a cell array of one or more raw FIX messages.
Example:

Data Types: cell

Output Arguments

fixtable — FIX message
table

FIX message, specified as a table containing the converted raw FIX messages in Fixstr.
The table variables correspond to the FIX tag names that are specified in the raw FIX
message. The table row contains the values that are specified for each tag in the raw FIX
message.

More About

. “Workflow for FIX Flyer” on page 2-10
. FIX Trading Community

See Also
Fix2struct | Fixflyer | struct2fix | table2fix

Introduced in R2015b

http://www.fixtradingcommunity.org/

struct2fix

struct2fix

Convert structure array containing FIX tags to cell array of FIX messages

Syntax

fixstr = struct2fix(Fixstruct)

Description

fixstr = struct2fix(fixstruct) converts FIX messages in a structure array
Fixstruct to raw FIX messages in the cell array Fixstr.

Examples

Convert FIX Message from Structure Array to Character Vector

Create a FIX message using a structure array Fixstruct. This structure array contains
two FIX messages. The first structure in the structure array represents a sell side
transaction for 100 shares of symbol ABC. The order type is a previously quoted order.
The order handling instruction is a private automated execution. The order transaction
time is the current moment. The FIX protocol version is 4.4. The second structure in the
structure array has the same order field values except that the order identifier is unique
across orders.

fixstruct_BeginString{1l,1} = "FIX.4.4%;
fixstruct_CLOrdld{1,1} = "338";
fixstruct._.Side{l1,1} = "2°;
fixstruct.TransactTime{l,1} = datestr(now);
fixstruct_.OrdType{l1,1} = °"D-;
fixstruct_Symbol{1,1} = "ABC";
fixstruct_HandlInst{1,1} = "1°;
fixstruct_MsgType{l,1} "D*;
Ffixstruct_OrderQty{1,1} "100";

fixstruct_BeginString{2,1} = "FIX.4.4%;
fixstruct_CLOrdld{2,1} = "339°;

5-303

5 Functions — Alphabetical List

5-304

fixstruct._Side{2,1} = "2°;
fixstruct.TransactTime{2,1} = datestr(now);
fixstruct.OrdType{2,1} = °"D-;
fixstruct_Symbol{2,1} = "ABC";
fixstruct_HandlInst{2,1} = "1°;
fixstruct_MsgType{2,1} = "D-;
Ffixstruct.OrderQty{2,1} = "100";
Convert the FIX messages in the structure array Fixstruct to a cell array of the raw
FIX messages Fixstr.

fixstr = struct2fix(fixstruct)

fixstr =

"8=FIX.4.4 11=338 54=2 60=21-May-2015 11:18:46 40=D 55=ABC 21=1 38=100 *
"8=FIX.4.4 11=339 54=2 60=21-May-2015 11:18:47 40=D 55=ABC 21=1 38=100 *

Each character vector is a raw FIX message that contains FIX tags and values. The space
in between the tag and value pairs is a SOH character. This character is not printable
and has a hexadecimal value of Ox01.

Input Arguments

fixstruct — FIX message
structure

FIX message, specified as a structure array. The data in the structure represents one FIX
message. The structure fields correspond to FIX tag names. The structure values are the
values that you specify in the FIX message.

Example: FixStruct.BeginString{l,1} = "FIX.4.4";
FixStruct.CLOrd1d{1,1} = "338";
fixStruct.Side{l1,1} = "27;
fixStruct.TransactTime{l,1} = datestr(now);
fixStruct.OrdType{l,1} = *D~;
fixStruct.Symbol{1,1} = "ABC";
fixStruct.HandlInst{1,1} = "1°;
fixStruct._MsgType{l,1} = "D~;
fixStruct.OrderQty{1,1} = "100°;

Data Types: struct

struct2fix

Output Arguments

fixstr — FIX message
cell array

FIX message, returned as a cell array of one or more converted raw FIX messages. The
number of messages in the output argument depends on the number of messages that

you specify in the input argument.

More About

. “Workflow for FIX Flyer” on page 2-10
. FIX Trading Community

See Also
fix2struct | fix2table | Fixflyer | table2fix

Introduced in R2015b

5-305

http://www.fixtradingcommunity.org/

5 Functions — Alphabetical List
P

table2fix

Convert table containing FIX tags to cell array of FIX messages

Syntax

Ffixstr = table2fix(fixtable)

Description

fixstr = table2fix(Ffixtable) converts the FIX messages in the table Fixtable to
raw FIX messages in the cell array Fixstr.

Examples

Convert FIX Message from Table to Character Vector

Create a FIX message using a table Fixtable. This table contains two FIX messages.
The first row in the table represents a sell side transaction for 100 shares of symbol ABC.
The order type is a previously quoted order. The order handling instruction is a private
automated execution. The order transaction time is the current moment. The second row
in the table has the same order field variables except that the order identifier is unique
across orders. The FIX protocol version is 4.4.

fixtable = table({"FIX.4_4";"FIX.4.4"}, ...
{"338";"339"},{"2";"2"}, ...
{datestr(now) ;datestr(now)}, ...
{°D";"D"},{"ABC";"ABC"}, ...
{"17;°1°},{"D";"D"},{ 100" ;100" }, - .-
"VariableNames” ,{"BeginString” ...
"CLOrdld® "Side" "TransactTime-
"OrdType® “Symbol® ...
"HandlInst® "MsgType® "OrderQty"});

Convert the FIX messages in the table Fixtable to a cell array of the raw FIX messages
fixstr.

5-306

table2fix

Ffixstr = table2fix(fixtable)

Fixstr =

"8=FI1X.4.4 11=338 54=2 60=22-May-2015 14:14:21 40=D 55=ABC 21=1 38=100 *
"8=FI1X.4.4 11=339 54=2 60=22-May-2015 14:14:21 40=D 55=ABC 21=1 38=100 *

Each character vector is a raw FIX message that contains FIX tags and values. The space
in between the tag and value pairs is a SOH character. This character is not printable
and has a hexadecimal value of 0x01.

Input Arguments

fixtable — FIX message
table

FIX message, specified as table. The table variables correspond to FIX tag names. Each
row contains the values you specify for the FIX message. Specify the values for each
variable as a cell array of character vectors.

Example: Fixtable = table({"FIX.4.4";"FIX.4.4"}, ...
{"3387;"339"},{"2";"2"}, ...

{datestr(now) ;datestr(now)}, - -.
{°D";"D"},{"ABC";"ABC"}, - --
{"17;71"},{°D";"D"},{"100";"100"}, ...
"VariableNames" ,{"BeginString”

"CLOrdId" "Side® "TransactTime®

"OrdType® “Symbol*

"HandlInst®™ “"MsgType" "OrderQty"});

Data Types: table

Output Arguments

fixstr — FIX message
cell array

FIX message, returned as a cell array of one or more converted raw FIX messages. The
number of messages in the output argument depends on the number of messages that
you specify in the input argument.

5-307

5 Functions — Alphabetical List
P

5-308

More About

“Workflow for FIX Flyer” on page 2-10
FIX Trading Community

See Also

fix2struct | fix2table | fixFflyer | struct2fix

Introduced in R2015b

http://www.fixtradingcommunity.org/

I(I’g

krg
Create Kissell Research Group transaction-cost analysis object

To start with transaction cost analysis, use MATLAB to retrieve the encrypted market-
impact parameters from the Kissell Research Group (KRG) FTP site. Then, use krg to
create a transaction-cost analysis object to store the encrypted data. For details about
market-impact parameters and data, consult the Kissell Research Group. For a simple
example of estimating trading costs, see “Estimate Trading Costs for Collection of Stocks”
on page 3-41.

Syntax

k = krg(midata)

k = krg(midata,midate)

k = krg(midata,midate,micode)

k = krg(midata,midate,micode, tradedays)
Description

k = krg(midata) creates a transaction-cost analysis object with market-impact
parameter data.

k = krg(midata,midate) selects a market-impact date.

k

krg(midata,midate,micode) also selects a market-impact code.

k

year.

krg(midata,midate,micode, tradedays) adds the number of trading days in a

Examples

Create Transaction-Cost Analysis Object

Retrieve the market-impact data from the Kissell Research Group FTP site.
Connect to the FTP site using the ftp function with a user name and password.

5-309

5 Functions — Alphabetical List
P

Navigate to the Ml _Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file.

f = fep("ftp.Kkissellresearch.com®, "username”, "pwd");
cd(f, "MI_Parameters®);
mget(F, "MI_Encrypted_Parameters.csv®);

miData = readtable("MI_Encrypted_Parameters.csv®,“delimiter”,
", ", "ReadRowNames* , fFalse, "ReadVariableNames” ,true);

miData contains the encrypted market-impact date, code, and parameters.

Create a Kissell Research Group transaction-cost analysis object k.

k = krg(miData)

k

krg with properties:

MiData: [276x12 table]

MiDate: 09-Sep-2015

MiCode: 1.00
TradeDayslInYear: 250.00

k has these properties:

* Market-impact data
* Market-impact date
* Market-impact code
* Number of trading days in the year

You can estimate trading costs using the market activity the current day. For details, see
“Estimate Trading Costs for Collection of Stocks” on page 3-41.

Create Transaction-Cost Analysis Object with Market-Impact Date

Retrieve the market-impact data from the Kissell Research Group FTP site.
Connect to the FTP site using the Ftp function with a user name and password.
Navigate to the Ml _Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file.

f = fep("ftp.kissellresearch.com®, "username”, "pwd");
cd(f, "MI_Parameters®);

5-310

krg

mget(F, "MI_Encrypted_Parameters.csv®);

miData = readtable("MI_Encrypted_Parameters.csv®, "delimiter”,

, ", "ReadRowNames” ,false, "ReadVariableNames” ,true);
miData contains the encrypted market-impact date, code, and parameters.

Create a Kissell Research Group transaction-cost analysis object k with a specific
market-impact date midate. Set the date to yesterday.

midate = “yesterday”;

k

krg(miData,midate)
k =
krg with properties:

MiData: [276x12 table]

MiDate: 09-Sep-2015

MiCode: 1.00
TradeDayslInYear: 250.00

You can estimate trading costs using the market activity for yesterday. For details, see
“Estimate Trading Costs for Collection of Stocks” on page 3-41.

Create Transaction-Cost Analysis Object with Market-Impact Code

Retrieve the market-impact data from the Kissell Research Group FTP site.
Connect to the FTP site using the Ftp function with a user name and password.
Navigate to the Ml _Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file.

f = ftp("ftp.kissellresearch.com”, "username”, "pwd");
cd(F, "MI_Parameters”);
mget(F, "MI_Encrypted_Parameters.csv™);

miData = readtable("MI_Encrypted_Parameters.csv”,"delimiter”,

, ", "ReadRowNames" ,false, "ReadVariableNames” , true);
miData contains the encrypted market-impact date, code, and parameters.

Create a Kissell Research Group transaction-cost analysis object k with a specific
market-impact code micode. Set the date to yesterday. Set the code to one.

5-311

5 Functions — Alphabetical List
P

5-312

midate = "yesterday”;
micode = 1;
k = krg(miData,midate,micode)

k =
krg with properties:

MiData: [276x12 table]

MiDate: 09-Sep-2015

MiCode: 1.00
TradeDayslInYear: 250.00

Using the market activity for yesterday, you can estimate trading costs for a particular
market region. For details, see “Estimate Trading Costs for Collection of Stocks” on page
3-41.

Create Transaction-Cost Analysis Object with Number of Trading Days

Retrieve the market-impact data from the Kissell Research Group FTP site.
Connect to the FTP site using the Ftp function with a user name and password.
Navigate to the Ml _Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file.

T = fep("ftp.Kkissellresearch.com®, "username”, "pwd");
cd(f, "MI_Parameters®);
mget(F, "MI_Encrypted_Parameters.csv®);

miData = readtable("MI_Encrypted_Parameters.csv®,“delimiter”,

, ", "ReadRowNames* ,false, "ReadVariableNames” ,true);
miData contains the encrypted market-impact date, code, and parameters.

Create a Kissell Research Group transaction-cost analysis object k with a specific
number of trading days in the year tradedays. Set the number of trading days to 251.
By entering [] for the market-impact date and code, krg sets these input arguments to
default values.

tradedays = 251;

k krg(miData, [], [1,tradedays)

k =

krg

krg with properties:

MiData: [276x12 table]

MiDate: 09-Sep-2015

MiCode: 1.00
TradeDayslInYear: 251.00

Using the market activity for yesterday, you can estimate trading costs for a particular
market region with 251 trading days in the year. For details, see “Estimate Trading
Costs for Collection of Stocks” on page 3-41.

Modify Transaction-Cost Analysis Object Property

Retrieve the market-impact data from the Kissell Research Group FTP site.
Connect to the FTP site using the Ftp function with a user name and password.
Navigate to the Ml _Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file.

f = fep("ftp.kissellresearch.com®, "username”, "pwd");
cd(f, "MI_Parameters®);
mget(F, "MI_Encrypted_Parameters.csv®);

miData = readtable("MI_Encrypted_Parameters.csv®,"delimiter”,

", ", "ReadRowNames” , false, "ReadVariableNames” ,true);
miData contains the encrypted market-impact date, code, and parameters.
Create a Kissell Research Group transaction-cost analysis object Kk using miData.
k = krg(miData);
Modify the MiDate property to retrieve market-impact data from a different day.
k.MiDate = "05-Dec-2015"
k =
krg with properties:
MiData: [276x12 table]
MiDate: "05-Dec-2015"

MiCode: 1.00
TradeDayslInYear: 251.00

5-313

5 Functions — Alphabetical List
P

5-314

You can estimate trading costs using the market activity for the specified day. For
details, see “Estimate Trading Costs for Collection of Stocks” on page 3-41.

. “Analyze Trading Execution Results” on page 3-2

. “Estimate Portfolio Liquidation Costs” on page 3-23

. “Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-19

. “Optimize Percentage of Volume Trading Strategy” on page 3-28

. “Optimize Trade Time Trading Strategy” on page 3-32

. “Optimize Trade Schedule Trading Strategy” on page 3-36

Input Arguments

midata — Market-impact data
table

Market-impact data, specified as a table. This table contains the encrypted market-
impact date, code, and parameters. Retrieve this data from the Kissell Research Group
FTP site ftp://ftp.kissellresearch.com using your user name and password. For details,
consult the Kissell Research Group.

Data Types: table

midate — Market-impact date
double | character vector | scalar datetime array

Market-impact date, specified as a double, character vector, or scalar datetime array.
By default, the market-impact date is the current date. To decrypt market-impact
parameters for a specific date, set this date. For details, consult the Kissell Research
Group.

Example: midate = "yesterday”;

Data Types: double | char | datetime

micode — Market-impact code
numeric scalar

Market-impact code, specified as a numeric scalar. By default, the market-impact code is
one. To decrypt market-impact parameters for a specific market region, set this code. For
details, consult the Kissell Research Group.

ftp://ftp.kissellresearch.com

krg

Example: micode = 1;

Data Types: double

tradedays — Number of trading days in the year
numeric scalar

Number of trading days in the year, specified as a numeric scalar. By default, the
number of trading days in the year is 250.

Data Types: double

Output Arguments

k — Transaction cost analysis
KRG object

Transaction cost analysis, returned as a KRG object. This table describes the object
properties.

Property Description

MiData Kissell Research Group market-impact
parameter data

MiDate Kissell Research Group market-impact
date

MiCode Kissell Research Group market-impact
code

TradeDayslInYear Number of trading days in the year

More About
Tips

+ If the market-impact code does not exist in the market-impact data, this error
displays.

The given region code does not match any records in the market impact data.

5-315

5 Functions — Alphabetical List
P

. ftp:/ftp.kissellresearch.com

See Also

iStar | marketlmpact | priceAppreciation | timingRisk

Introduced in R2016a

5-316

ftp://ftp.kissellresearch.com

costCurves

costCurves

Estimate market-impact cost of order execution

Syntax

cc = costCurves(k,trade,tradeQuantity,tgRange, tradeStrategy, tsRange)

Description

cc = costCurves(k,trade,tradeQuantity,tgRange, tradeStrategy,tsRange)
returns the market-impact costs of order execution using:

+ Kissell Research Group (KRG) transaction-cost analysis object k

* Trade data trade

* Trade quantity tradeQuantity with a range of values tqRange
* Trade strategy tradeStrategy with a range of values tsRange

Examples

Estimate Market-Impact Cost for an Order

Retrieve the market-impact data from the Kissell Research Group FTP site.
Connect to the FTP site using the Ftp function with a user name and password.
Navigate to the Ml _Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file.

f = ftp("ftp.kissellresearch.com®, "username”, "pwd");
cd(f, "MI_Parameters®);
mget(F, "MI_Encrypted_Parameters.csv®);

miData = readtable("MI_Encrypted_Parameters.csv®,"delimiter”,
*,","ReadRowNames" , false, "ReadVariableNames"” , true);

miData contains the encrypted market-impact date, code, and parameters.

Create a Kissell Research Group transaction-cost analysis object k.

5-317

5 Functions — Alphabetical List
P

5-318

k = krg(miData);

Load the example data from the MAT-file KRGExampleData.mat, which is included with
the toolbox.

load KRGExampleData
The variable TradeData appears in the MATLAB workspace.
TradeData contains these variables:

* Stock symbol

+ Stock price

* Average daily volume
* Volatility

For a description of the example data, see “Kissell Research Group Example Data Set
Description” on page 3-9.

Estimate market-impact costs with the trade quantity "Size" and strategy "POV".
Specify the trade quantity range with increments of 0.01 by starting from 0.01 and
ending at one. Specify the trade strategy range with increments of 0.05 by starting from
0.05 and ending at 0.5.

cc = costCurves(k,TradeData, "Size",(0.01:0.01:1),"POV*",(0.05:0.05:0.5));

Display the first three rows of market-impact cost data.

cc(1:3,:)

ans =
Symbol Size Shares Dollars POV TradeTime Cost _BP Cost |
"AAL" 0.01 114764 .24 6251208.50 0.05 0.19 11.42 0.06
"AAL" 0.01 114764 .24 6251208.50 0.10 0.09 17.93 0.10
"AAL" 0.01 114764 .24 6251208.50 0.15 0.06 23.42 0.13

The market-impact cost data contains:
* Stock symbol
+ Size

* Number of shares in the transaction

costCurves

+ Dollar amount of the transaction

+ Percentage of volume to complete the transaction

* Trade time to complete the transaction in percentage of the day
* Market-impact cost in basis points

* Market-impact cost in dollars per share

* Market-impact cost in dollars

Display cost curves for the first stock for these percentage of volume rates: 5%, 15%, 25%,
and 35%.

figure

subplot(2,2,1)
plot(cc.Size(1:10:1000)*100,cc.-Cost_BP(1:10:1000))
grid on

axis([0 100 0 2501)

xlabel ({"Size", " (WADV)"})

ylabel({"Cost™, " (bps)"})

title("POV = 5%%)

a = gca;

a.XAxis.TickLabelFormat = "%g%%" ;

subplot(2,2,2)
plot(cc.Size(3:10:1000)*100,cc-Cost_BP(3:10:1000))
grid on

axis([0 100 0 2501)

xlabel ({"Size", " (WADV)"})

ylabel({"Cost™, " (bps)"})

title("POV = 15%%)

b = gca;

b_XAxis.TickLabelFormat = "%g%%";

subplot(2,2,3)
plot(cc.Size(5:10:1000)*100,cc-Cost_BP(5:10:1000))
grid on

axis([0 100 0 2501)

xlabel ({"Size", " (WADV)"})

ylabel({"Cost™, " (bps)"})

title("POV = 25%%)

Cc = gca;

c.XAxis.TickLabelFormat = "%g%%" ;

subplot(2,2,4)

5-319

5 Functions — Alphabetical List
P

plot(cc.Size(7:10:1000)*100,cc.-Cost_BP(7:10:1000))

grid on
axis([0 100 0 2501)

xlabel ({"Size", " (%ADV)"})
ylabel ({"Cost", " (bps)"})

title("POV = 35%")
d = gca;

d.XAxis.TickLabelFormat = "%g%%" ;

E Figurel
File Edit View Insert Tools
]U_Fjlﬂqilﬂ [% .4%\-._:\-@@@%'@:
POV =5%
200
w W]
[= =% =]
O £ 100 &
0
0% 50% 100%
Size
(%ADV)
POV = 25%
200
iy —— | =
[« =1 - =]
O 2w Q
0
0% 50% 100%:
Size
(%ADV)

Desktop Window Help

100%

O =@
POV = 15%
200
100 e
/’f--
0
0% 50%
Size
(% ADV)
POV = 35%
200 o
- -
100 /f
0
0% 50%
Size
(% ADV)

100%

5-320

costCurves

This figure demonstrates how fast to trade a specific order size within a price level.

. “Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-19

Input Arguments

k — Transaction cost analysis
KRG object

Transaction cost analysis, specified as a KRG object created using krg.

trade — Trade data
table | structure

Trade data that describes the stocks in the transaction, specified as a table or structure.
trade must contain these variable or field names.

Variable or Field Name Description

Symbol Stock symbol

Price Stock price

ADV Average daily volume
Volatility Volatility

Example: trade = table({"XYZ"},100.00,860000,0.27,*VariableNames~,
{"Symbol* "Price® "ADV" "Volatility"})

Example: trade =
struct("Symbol ", "XYZ","Price”,100.00, "ADV*, 860000, "Volatility",0.27)

These examples do not represent real market data.

Data Types: struct | table

tradeQuantity — Trade quantity
"Size" | "Shares Dollars*®

Trade quantity, specified as one of these values.

Valve Trade Quantity Description

"Size" Shares in the transaction, which is a
percentage of average daily trading volume

5-321

5 Functions — Alphabetical List
P

5-322

Valve Trade Quantity Description
"Shares*” Number of shares in the transaction
"Dollars” Total value of the transaction

tqRange — Trade quantity range
vector

Trade quantity range, specified as a vector. costCurves uses these values with the

trade strategy range values to estimate market-impact costs for different quantities and
strategies.

Example: "Size",(0.01:0.01:1) specifies a trade quantity range with increments of
0.01 starting from 0.01 and ending at one

Data Types: double

tradeStrategy — Trade strategy
"POV*® | "TradeTime"

Trade strategy, specified as one of these values.

Values Trade Strategy Name
"POV*® Percentage of volume
"TradeTime" Trade time in percentage of the day

tsRange — Trade strategy range
vector

Trade strategy range, specified as a vector. costCurves uses these values with the

trade quantity range values to estimate market-impact costs for different quantities and
strategies.

Example: "POV*", (0.05:0.05:0.5) specifies a trade strategy range with increments of
0.05 starting from 0.05 and ending at 0.5

Data Types: double

Output Arguments

cc — Cost curves
table | structure

costCurves

Cost curves, returned as a table or structure with these variable names or fields.

Variable or Field Name Description

Symbol Stock symbol

Size Shares in a transaction in percentage of
average daily trading volume

Shares Number of shares in the transaction

Dollars Dollar amount of the transaction

POV Percentage of volume to complete the
transaction

TradeTime Trade time to complete the transaction in
percentage of the day

Cost_BP Market-impact cost of the transaction in

basis points

Cost_DollarsPerShare

Market-impact cost of the transaction in
dollars per share

Cost_Dollars

Market-impact cost of the transaction in
dollars

More About

Tips

* For details about the calculations, contact Kissell Research Group.

References

[1] Kissell, Robert. “A Practical Framework for Transaction Cost Analysis.” Journal of
Trading. Vol. 3, Number 2, Summer 2008, pp. 29-37.

[2] Kissell, Robert. “Algorithmic Trading Strategies.” Ph.D. Thesis. Fordham University,

May 2006.

[3] Kissell, Robert. “T'CA in the Investment Process: An Overview.” Journal of Index
Investing. Vol. 2, Number 1, Summer 2011, pp. 60-64.

5-323

5 Functions — Alphabetical List
P

[4] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.
Elsevier/Academic Press, 2013.

[56] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. AMACOM, Inc.,
2003.

See Also

iStar | krg | marketlImpact | portfolioCostCurves | timingRisk

Introduced in R2016a

5-324

iStar

iStar

Estimate instantaneous trading cost for order

Syntax

itc = iStar(k,trade)

Description

itc = iStar(k,trade) returns the instantaneous trading cost of an order using the
Kissell Research Group (KRG) transaction-cost analysis object k and trade data trade.
To estimate the instantaneous trading cost, iStar uses the I-Star trading cost model.

Examples

Estimate Instantaneous Trading Cost for Stocks

Retrieve the market-impact data from the Kissell Research Group FTP site.
Connect to the FTP site using the Ftp function with a user name and password.
Navigate to the Ml _Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file.

f = fep("ftp.kissellresearch.com®, "username”, "pwd");
cd(F, "MI_Parameters®);
mget(F, "MI_Encrypted_Parameters.csv®);

miData = readtable("MI_Encrypted_Parameters.csv®,"delimiter”,
",","ReadRowNames” , false, "ReadVariableNames"” ,true);

miData contains the encrypted market-impact date, code, and parameters.
Create a Kissell Research Group transaction-cost analysis object k.
k = krg(miData);

Load the example data from the MAT-file KRGExampleData.mat, which is included with
the toolbox.

5-325

5 Functions — Alphabetical List

5-326

load KRGExampleData
The variable TradeData appears in the MATLAB workspace.
TradeData contains these variables:

* Stock symbol

+ Side

* Number of shares

+ Size

+ Stock price

+ Average daily volume
* Volatility

* Percentage of volume

For a description of the example data, see “Kissell Research Group Example Data Set
Description” on page 3-9.

Estimate instantaneous trading cost itc for each stock using the Kissell Research Group
transaction-cost analysis object K. Display the first three instantaneous trading costs.

itc = iStar(k,TradeData);

itc(1:3)
ans =
33.48
317.58
62.94

Instantaneous trading costs display in basis points.

. “Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-19

Input Arguments

k — Transaction cost analysis
KRG object

iStar

Transaction cost analysis, specified as a KRG object created using krg.

trade — Trade data
table | structure

Trade data that describes the stocks in the transaction, specified as a table or structure.
trade must contain these variable or field names.

Variable or Field Name Description

Symbol Stock symbol

Side Buy or sell side

Shares Number of shares in the transaction

Size Shares in the transaction, which is a
percentage of average daily trading volume

Price Stock price

ADV Average daily volume

Volatility Volatility

POV Percentage of volume

The trading cost varies with the trade strategy. iStar determines the trade strategy
using these variables in this order:

1 Percentage of volume

2 Trade time

3 Trade schedule

To change the trade strategy from percentage of volume to trade time, remove the
variable POV in the table and add the variable TradeTime with trade time data.
To use the trade schedule strategy, remove the variable TradeTime and add the
TradeSchedule and VolumeProfi le variables.

If you specify size in the trade data, iStar uses the Size variable. Otherwise, iStar
uses the variables ADV and Shares to determine the size.

For example, to create trade data as a table, enter:

trade = table({"XYzZ"},{"Buy"},9300,0.06,29.68,860000,0.27,0.17, ...
"VariableNames® ,{"Symbol*" "Side" "Shares® "Size" "Price" "ADV" "Volatility®" "POV"})

5-327

5 Functions — Alphabetical List
P

5-328

To create trade data as a structure, enter:

trade.Symbol = {"XYZ"};
trade.Side = {"Buy"};
trade.Shares = 9300;
trade.Size = 0.06;
trade.Price = 29.68;
trade.ADV = 860000;
trade._Volatility = 0.27;
trade.POV = 0.17;

These examples do not represent real market data.

Data Types: struct | table

Output Arguments

itc — Instantaneous trading cost
vector

Instantaneous trading cost, returned as a vector. The vector values correspond to the
instantaneous trading cost in basis points for each stock in trade.

More About

I-Star Trading Cost Model

The I-Star trading cost model (I-Star) estimates the instantaneous cost of an order. If a
market participant immediately releases the entire order to the market for execution,
they incur this cost. This cost also refers to the market participant cost accounting for
100% of the market volume over the execution period.

The I-Star model is

* s
e (G| o

Shares are the number of shares to trade. ADV is the average daily volume of the stock.
o 1is the price volatility. a;, ay, and ag are the model parameters.

iStar

Model Parameter Description

o Price sensitivity to order flow
as Order size shape

as Volatility shape

The general I-Star model that includes stock-specific factors is

| o .[Shares

)
Wj -O'a3-Pricea5 'X}?k.

Price is the stock price. aj is the price shape model parameter. X}, is the stock-specific
factor such as market capitalization, beta, P/E ratio, and Debt/Equity ratio. This
formulation can include multiple stock-specific factors. a;, is the corresponding shape

parameter for the stock-specific factor Xj, .
Tips

+ For details about the formula and calculations, contact the Kissell Research Group.

References

[1] Kissell, Robert. “A Practical Framework for Transaction Cost Analysis.” Journal of
Trading. Vol. 3, Number 2, Summer 2008, pp. 29-37.

[2] Kissell, Robert. “Algorithmic Trading Strategies.” Ph.D. Thesis. Fordham University,
May 2006.

[3] Kissell, Robert. “Creating Dynamic Pre-Trade Models: Beyond the Black Box.”
Journal of Trading. Vol. 6, Number 4, Fall 2011, pp. 8-15.

[4] Kissell, Robert. “T'CA in the Investment Process: An Overview.” Journal of Index
Investing. Vol. 2, Number 1, Summer 2011, pp. 60-64.

[5] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.
Elsevier/Academic Press, 2013.

5-329

5 Functions — Alphabetical List
P

[6] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. AMACOM, Inc.,
2003.

See Also
krg | liquidityFactor | marketlmpact | priceAppreciation | timingRisk

Introduced in R2016a

5-330

liquidityFactor

liquidityFactor

Estimate and compare liquidation costs across stocks

Syntax

ITf = liquidityFactor(k,trade)

Description

IT = liquidityFactor(k,trade) returns the ratio of liquidation costs due

to liquidity demand by stock for an equal investment value, or liquidity factor.
liquidityFactor uses the Kissell Research Group (KRG) transaction-cost analysis
object k and trade data trade.

Examples

Determine Liquidity Factor for Stocks

Retrieve the market-impact data from the Kissell Research Group FTP site.
Connect to the FTP site using the ftp function with a user name and password.
Navigate to the Ml _Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file.

f = fep("ftp.Kkissellresearch.com®, "username”, "pwd");
cd(f, "MI_Parameters®);
mget(F, "MI_Encrypted_Parameters.csv®);

miData = readtable("MI_Encrypted_Parameters.csv®,“delimiter”,
", ", "ReadRowNames* , false, "ReadVariableNames"® ,true);

miData contains the encrypted market-impact date, code, and parameters.
Create a Kissell Research Group transaction-cost analysis object k.
k = krg(miData);

Load the example data from the MAT-file KRGExampleData.mat, which is included with
the toolbox.

5-331

5 Functions — Alphabetical List
P

5-332

load KRGExampleData
The variable TradeData appears in the MATLAB workspace.

TradeData contains these variables:

* Stock symbol

+ Stock price

* Average daily volume
* Volatility

For a description of the example data, see “Kissell Research Group Example Data Set
Description” on page 3-9.

Determine liquidity factor 1¥ for each stock using the Kissell Research Group
transaction-cost analysis object K. Display the first three liquidity factor values.

IT = liquidityFactor(k,TradeData);

1F(1:3)
ans =
0.30
2.37
0.35

IT returns the ratios for stock comparison due to liquidity demands.

. “Estimate Portfolio Liquidation Costs” on page 3-23

Input Arguments

k — Transaction cost analysis
KRG object

Transaction cost analysis, specified as a KRG object created using krg.

trade — Trade data
table | structure

liquidityFactor

Trade data that describes the stocks in the transaction, specified as a table or structure.
trade must contain these variable or field names.

Variable or Field Name Description

Symbol Stock symbol

Price Stock price

ADV Average daily volume
Volatility Volatility

Example: trade = table({"XYZ"},100.00,860000,0.27, "VariableNames",
{"Symbol*® "Price® "ADV" “Volatility"})

Example: trade =
struct("Symbol ", "XYZ","Price”,100.00, "ADV*, 860000, "Volatility~",0.27)

These examples do not represent real market data.

Data Types: struct | table

Output Arguments

I'T — Liquidity factor

vector

Liquidity factor, returned as a vector. The vector values are ratios that compare the
liquidation costs due to liquidity demands across stocks in trade for the dollar value and
execution strategy.

More About

Liquidity Factor

The Liquidity Factor (LF) is a stock-specific measure of price sensitivity to investment
dollars.

LF provides investors with a fair and consistent comparison of expected liquidation costs
across stocks. LF incorporates stock-specific information to determine its sensitivity to
order flow and investment dollars. The LF metric shows the ratio of liquidation costs due

5-333

5 Functions — Alphabetical List
P

5-334

to liquidity demand by stock for an equal investment value in each stock. Market impact
relies on the order size or shares traded which vary from order to order. LF provides an
apples-to-apples comparison across financial instruments. Consider a stock I that has an
LF =0.10 and a stock II that has an LF = 0.20. Stock II is twice as expensive to transact
for an equal dollar value. An investor buys or sells $1 million dollars of stock in stock I
and stock IT utilizing the same execution strategy. The cost of stock II is twice as large as

stock I. The LF metric incorporates stock liquidity, volatility, and price to determine the
LF trading cost parameter.

The LF model 1s

1\ 1\
LF=qa|—— | -c%- - Price%.
al[j (o} [me j ice

o 1s price volatility. ADV is the average daily volume of the stock. Price is the current

stock price in local currency. a;, ay, ag, and ay are the model parameters.

Model Parameter Description
o Price sensitivity to order flow
as Order size shape
as Volatility shape
as Price shape
Tips

For details about the formula and calculations, contact the Kissell Research Group.
You can expand the LF model to include a stock-specific factor such as market
capitalization, beta, P/E ratio, and Debt/Equity ratio. In this case, X} denotes the

stock-specific factor and a; denotes the corresponding shape parameter. For details

about implementing an expanded LF model, contact the Kissell Research Group.

References

[1] Kissell, Robert. “A Practical Framework for Transaction Cost Analysis.” Journal of
Trading. Vol. 3, Number 2, Summer 2008, pp. 29-37.

liquidityFactor

[2] Kissell, Robert. “Algorithmic Trading Strategies.” Ph.D. Thesis. Fordham University,
May 2006.

[3] Kissell, Robert. “T'CA in the Investment Process: An Overview.” Journal of Index
Investing. Vol. 2, Number 1, Summer 2011, pp. 60-64.

[4] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.
Elsevier/Academic Press, 2013.

[5] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. AMACOM, Inc.,
2003.

See Also

iStar | krg | marketlmpact | priceAppreciation | timingRisk

Introduced in R2016a

5-335

5 Functions — Alphabetical List
P

marketimpact

Estimate price movement due to order or trade

Syntax

mi = marketlmpact(k,trade)

Description

mi = marketlmpact(k,trade) returns the market impact cost for stocks using the
Kissell Research Group (KRG) transaction-cost analysis object k and trade data trade.

Examples

Estimates Market-Impact Costs

Retrieve the market-impact data from the Kissell Research Group FTP site.
Connect to the FTP site using the Ftp function with a user name and password.
Navigate to the Ml _Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csyv file.

f = fep("ftp.kissellresearch.com®, "username”, "pwd");
cd(f, "MI_Parameters®);
mget(F, "MI_Encrypted_Parameters.csv®);

miData = readtable("MI_Encrypted_Parameters.csv®, "delimiter”,
", ", "ReadRowNames* , false, "ReadVariableNames” ,true);

miData contains the encrypted market-impact date, code, and parameters.
Create a Kissell Research Group transaction-cost analysis object k.
k = krg(miData);

Load the example data from the MAT-file KRGExampleData.mat, which is included with
the toolbox.

5-336

marketlmpact

load KRGExampleData

The variable TradeData appears in the MATLAB workspace.

TradeData contains these variables:

Stock symbol

Side

Number of shares
Size

Stock price

Average daily volume
Volatility

Percentage of volume

For a description of the example data, see “Kissell Research Group Example Data Set
Description” on page 3-9.

Estimates market-impact cost mi for each stock using the Kissell Research Group

transaction-cost analysis object K. Display the first three market-impact costs.

mi = marketlmpact(k,TradeData);
mi(1:3)
ans =

0.51

96.86

10.72

Market-impact costs display in basis points.

“Analyze Trading Execution Results” on page 3-2

“Estimate Portfolio Liquidation Costs” on page 3-23

“Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-19
“Optimize Percentage of Volume Trading Strategy” on page 3-28
“Optimize Trade Time Trading Strategy” on page 3-32

“Optimize Trade Schedule Trading Strategy” on page 3-36

5-337

5 Functions — Alphabetical List
P

5-338

Input Arguments

k — Transaction cost analysis
KRG object

Transaction cost analysis, specified as a KRG object created using krg.

trade — Trade data
table | structure

Trade data that describes the stocks in the transaction, specified as a table or structure.
trade must contain these variable or field names.

Variable or Field Name

Description

Symbol Stock symbol

Side Buy or sell side

Shares Number of shares in the transaction

Size Shares in the transaction, which is a
percentage of average daily trading volume

Price Stock price

ADV Average daily volume

Volatility Volatility

POV Percentage of volume

The trading cost varies with the trade strategy. marketlmpact determines the trade

strategy using these variables in this order:

1 Percentage of volume
2 Trade time
3 Trade schedule

To change the trade strategy from percentage of volume to trade time, remove the
variable POV in the table and add the variable TradeTime with trade time data.
To use the trade schedule strategy, remove the variable TradeTime and add the
TradeSchedule and VolumeProfi le variables.

If you specify size in the trade data, marketImpact uses the Size variable. Otherwise,
marketlImpact uses the variables ADV and Shares to determine the size.

marketlmpact

For example, to create trade data as a table, enter:

trade = table({"XYz"},{"Buy"},9300,0.06,29.68,860000,0.27,0.17, ...
"VariableNames"® ,{"Symbol" "Side" "Shares®" "Size" "Price" "ADV" "Volatility" "POV"})

To create trade data as a structure, enter:

trade.Symbol = {"XYZ"};
trade.Side = {"Buy"};
trade.Shares = 9300;
trade.Size = 0.06;
trade.Price = 29.68;
trade.ADV = 860000;
trade._Volatility = 0.27;
trade.POV = 0.17;

These examples do not represent real market data.

Data Types: struct | table

Output Arguments

mi — Market-impact cost
vector

Market-impact cost, returned as a vector. The vector values correspond to the market-
impact costs in basis points for each stock in trade.

More About

Market Impact

Market impact (MI) estimates the price movement in a stock caused by a particular trade
or order.

Market-impact cost always causes adverse price movement. Buy orders push the stock
price higher and sell orders push the stock price lower. Market-impact cost occurs for
two reasons: liquidity demands of the traders or investor and the information content of
the order. The liquidity demand of a buy order requires the buyer to provide the market
a premium to attract additional sells into the market. The liquidity demand of a sell
order causes the seller to offer the stock at a discount to attract additional buys into the

5-339

5 Functions — Alphabetical List
P

market. The information content of the trade typically signals to the market that the
stock is under- or overvalued. Buy orders tend to signal to the market that the stock is
undervalued thus causing an increase in price to correct for the mispricing. Sell orders
tend to signal to the market that the stock is overvalued thus causing a decrease in
price to correct for the mispricing. Market-impact cost depends on order size, volatility,
company characteristics, and prevailing market conditions over the trading horizon such
as liquidity and intraday trading patterns.

MI for an order that executes instantaneously is equal to the I-Star trading cost model (I-
Star). For details about I-Star, see 1Star. When MI equals I-Star, the trading costs are
high and prices move adversely. Therefore, investors trade passively to reduce their cost.
Thus, they slice the order and trade over time such as minutes, hours, or possibly days.
marketlImpact incorporates the trade strategy of the investors into the cost calculation.

The MI model is

MI=b;-I -POV% +(1-b;)-1 .

I" is I-Star. POVis the percentage of market volume, or participation fraction, of the
order. ay and b; are the model parameters.

Model Parameter Description
ay Percentage of volume rate shape
b, Percentage of temporary market impact.

Temporary impact is dependent upon the
trading strategy. Temporary impact occurs
because of the liquidity demands of the
investor.

1-b Percentage of permanent market impact.
Permanent impact is the unavoidable
1mpact cost. The order does not control
the permanent impact. Permanent impact
occurs because of the information content
of the trade.

Tips

* For details about the formula and calculations, contact the Kissell Research Group.

5-340

marketlmpact

References

[1] Kissell, Robert. “A Practical Framework for Transaction Cost Analysis.” Journal of
Trading. Vol. 3, Number 2, Summer 2008, pp. 29-37.

[2] Kissell, Robert. “Algorithmic Trading Strategies.” Ph.D. Thesis. Fordham University,
May 2006.

[3] Kissell, Robert. “Creating Dynamic Pre-Trade Models: Beyond the Black Box.”
Journal of Trading. Vol. 6, Number 4, Fall 2011, pp. 8-15.

[4] Kissell, Robert. “TCA in the Investment Process: An Overview.” Journal of Index
Investing. Vol. 2, Number 1, Summer 2011, pp. 60—64.

[56] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.
Elsevier/Academic Press, 2013.

[6] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. AMACOM, Inc.,
2003.

See Also

iStar | krg | liquidityFactor | priceAppreciation | timingRisk

Introduced in R2016a

5-341

5 Functions — Alphabetical List
P

porifolioCostCurves

Estimate market-impact cost of order execution for portfolio

Syntax

pcc = portfolioCostCurves(k,portfolio,tradeQuantity,tqRange,
tradeStrategy,tsRange)

Description

pcc = portfolioCostCurves(k,portfolio,tradeQuantity,tqRange,
tradeStrategy, tsRange) returns the market-impact cost of order execution for a
portfolio using:

+ Kissell Research Group (KRG) transaction-cost analysis object k

+ Portfolio data portfolio

* Trade quantity tradeQuantity with a range of values tqRange

+ Trade strategy tradeStrategy with a range of values tsRange

Examples

Estimate Market-Impact Cost for a Portfolio Order

Retrieve the market-impact data from the Kissell Research Group FTP site.
Connect to the FTP site using the Ftp function with a user name and password.
Navigate to the Ml _Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file.

f = fep("ftp.kissellresearch.com®, "username”, "pwd");
cd(f, "MI_Parameters®);
mget(F, "MI_Encrypted_Parameters.csv®);

miData = readtable("MI_Encrypted_Parameters.csv®, "delimiter”,
", ", "ReadRowNames* , false, "ReadVariableNames” ,true);

5-342

portfolioCostCurves

miData contains the encrypted market-impact date, code, and parameters.

Create a Kissell Research Group transaction-cost analysis object k.
k = krg(miData);

Load the example portfolio data from the MAT-file KRGExampleData.mat, which is
included with the toolbox.

load KRGExampleData
The variable Portfol ioData appears in the MATLAB workspace.
Portfol ioData contains these variables:

* Stock symbol

* Local price

* Price in a different currency if applicable
+ Average daily volume

* Volatility

* Number of shares

For a description of the example data, see “Kissell Research Group Example Data Set
Description” on page 3-9.

Estimate market-impact cost for an order execution on a portfolio of assets. Specify

the trade quantity as Dol larValue. Specify the trade quantity range tqRange with
increments of $10,000,000. Start with a total portfolio value of $100,000,000 and end
with $500,000,000. Set the percentage of volume trading strategy POV. Specify the trade
strategy range tsRange with increments of 10% by starting with a percentage of volume
of 10% and ending with 40%.

tgRange
tsRange

(100000000 : 10000000 : 500000000) ;
(0.10:0.10:0.40);

pcc = portfolioCostCurves(k,PortfolioData, "DollarValue”,tgRange, - ..
"POV*" ,tsRange);

Display the first three rows of market-impact cost data.

pcc(1:3,:)

5-343

5 Functions — Alphabetical List
P

5-344

ans =
Size Shares TradeValue AbsTradeValue POV TradeTime Cost_bj
0.02 5612057.03 100000000.00 328737579.09 0.10 0.18 38.74
0.02 5612057.03 100000000.00 328737579.09 0.20 0.08 61.18
0.02 5612057.03 100000000.00 328737579.09 0.30 0.05 80.07

The market-impact cost data contains:

+ Average trade size across all stocks in the portfolio

* Number of shares in the transaction

* Sum of traded value across all stocks in the portfolio

* Sum of absolute value of the trade value across all stocks in the portfolio

* Average execution percentage of volume to complete the number of shares

* Average trade time in percentage of the day to complete the number of shares

+ Market-impact cost in basis points of local price

* Market-impact cost in dollars per share

* Market-impact cost in total dollar value

Display portfolio cost curves for percentage of volume rates: 10%, 20%, 30%, and 40%.

figure
sizelOl
size20
size30
size4d0
costl0
cost20
cost30
cost40

pcc.Size(1l:4:end)*100;
pcc.Size(2:4:end)*100;
pcc.Size(3:4:end)*100;
pcc.Size(4:4:end)*100;
pcc.Cost_bp(l:4:end);
pcc.Cost_bp(2:4:end);
pcc.Cost_bp(3:4:end);
pcc.Cost_bp(4:4:end);

plot(sizelO,costl0,size20,cost20,size30,cost30,size40,cost40)

grid on

axis([2 11 25 200]1)

xlabel ({"Size", " (WADV)"})

ylabel({"Cost™, " (bps)"})

legend("POV = 10%","POV = 20%","POV = 30%", POV = 40%", ...
"Location®, "northwest"®)

title("Portfolio Costs™)

a = gca;

portfolioCostCurves

a.XAxis.TickLabelFormat = "%g%%" ;

P

E Figurel EI@
File Edit View Inset Tools Desktop Window Help N
]U_Fjlﬂqilﬂ [% '4{_'—:_@@@%,@; D EE
Portfolio Costs
ZDD T T T T T T T T
— POV = 10%
180 - |—— POV = 20% 7
POV = 30% _____________----
160 |F |—— POV =40% - g
140 -
= 5120 F — -
o & .,f'
UE__, - _____.--"'
100 B~ o :
BD . ----------__..-"--- _
60 =" ____________———_____ i
40— 1
2% 3% 4% 5% 6% % 8% 9% 10% 11%
Size
(%ADV)

This figure demonstrates using portfolio costs to construct the portfolio and manage
portfolio contents. By analyzing portfolio costs, you can determine the optimal portfolio
size.

. “Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-19

5-345

5 Functions — Alphabetical List

Input Arguments

k — Transaction cost analysis
KRG object

Transaction cost analysis, specified as a KRG object created using krg.

portfolio — Portfolio data
table | structure

Portfolio data that describes the stocks in the portfolio, specified as a table or structure.
portfolio must contain these variable or field names.

Variable or Field Name Description

Symbol Stock symbol.

Price_Local Local price.

Price_Currency Price, specified as the stock price with

a different currency if the stock trades
outside the United States. If the stock
trades in the United States, the value
equals the local price.

ADV Average daily volume.
Volatility Volatility.
Shares Number of shares.

The number of symbols in the portfolio data must match the number of values for each
market-impact parameter in the miData property of K. For details about the market-
impact parameters, contact the Kissell Research Group.

Example: portfolio =
table({"XYz"},100.00,100.00,860000,0.27,550, "VariableNames",
{"Symbol*® "Price_Local® "Price_Currency” “ADV" "Volatility"
"Shares™"})

Example: portfolio =
struct(*Symbol*®,*XYZ","Price_Local®,100.00, "Price_Currency”,100.00, "ADV* ,8600C

These examples do not represent real market data.

Data Types: struct | table

5-346

portfolioCostCurves

tradeQuantity — Trade quantity
"DollarValue” | "PercentValue®

Trade quantity, specified as one of these values.

Valve Trade Quantity Description

"Dollarvalue* Total dollar value of the portfolio

"PercentValue” Percentage of the total dollar value of the
portfolio

tgRange — Trade quantity range
vector

Trade quantity range, specified as a vector. portfol ioCostCurves uses these values
with the trade strategy range values to estimate market-impact costs for different
quantities and strategies.

Example: "Size",(0.01:0.01:1) specifies a trade quantity range with increments of
0.01 starting from 0.01 and ending at one

Data Types: double

tradeStrategy — Trade strategy
"POV™ | "TradeTime"

Trade strategy, specified as one of these values.

Values Trade Strategy Name
"POV*® Percentage of volume
"TradeTime" Trade time in percentage of the day

tsRange — Trade strategy range
vector

Trade strategy range, specified as a vector. portfolioCostCurves uses these values
with the trade quantity range values to estimate market-impact costs for different
quantities and strategies.

Example: "POV", (0.05:0.05:0.5) specifies a trade strategy range with increments of
0.05 starting from 0.05 and ending at 0.5

Data Types: double

5-347

5 Functions — Alphabetical List
P

5-348

Output Arguments

pcc — Portfolio cost curves
table | structure

Portfolio cost curves, returned as a table or structure with these variable names or fields.

Variable or Field Name Description

Size Average trade size across all stocks in the
portfolio.

Shares Number of shares in the transaction.

TradeValue Trade value, or the total dollar value of the
stock position in the portfolio adjusted for
side. Long/Buy positions have a positive
trade value and Short/Sell positions have a
negative trade value.

AbsTradeValue Sum of absolute value of the trade value
across all stocks in the portfolio.

POV Average execution percentage of volume to
complete the number of shares.

TradeTime Average trade time in percentage of the
day to complete the number of shares.

Cost_bp Market-impact cost in basis points of local
price.

Cost_DollarsPerShare Market-impact cost in dollars per share.

Cost_Dollars Market-impact cost in total dollar value.

More About

Tips

+ To test multiple portfolio transactions, you can use different ranges. You can change
the percentage of shares in the transaction or use a different trade strategy. For
details, see “Input Arguments” on page 5-346.

* For details about the calculations, contact Kissell Research Group.

portfolioCostCurves

References

[1] Kissell, Robert. “A Practical Framework for Transaction Cost Analysis.” Journal of
Trading. Vol. 3, Number 2, Summer 2008, pp. 29-37.

[2] Kissell, Robert. “Algorithmic Trading Strategies.” Ph.D. Thesis. Fordham University,
May 2006.

[3] Kissell, Robert. “T'CA in the Investment Process: An Overview.” Journal of Index
Investing. Vol. 2, Number 1, Summer 2011, pp. 60-64.

[4] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.
Elsevier/Academic Press, 2013.

[5] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. AMACOM, Inc.,
2003.

See Also

costCurves | iStar | krg | marketlmpact | timingRisk

Introduced in R2016a

5-349

5 Functions — Alphabetical List
P

5-350

priceAppreciation

Estimate trading cost due to natural price movement

Syntax

alpha = priceAppreciation(k,trade)

Description

alpha = priceAppreciation(k,trade) returns the trading cost due to the natural
price movement of a stock, or price appreciation. priceAppreciation uses the Kissell
Research Group (KRG) transaction cost object k and trade data trade.

Examples

Estimate Alpha

Retrieve the market-impact data from the Kissell Research Group FTP site.
Connect to the FTP site using the Ftp function with a user name and password.
Navigate to the Ml _Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file

T = fep("ftp.kissellresearch.com®, "username”, "pwd");
cd(f, "MI_Parameters®);
mget(F, "MI_Encrypted_Parameters.csv®);

miData = readtable("MI_Encrypted_Parameters.csv®, “delimiter”,
", ,"ReadRowNames* , false, "ReadVariableNames"® ,true);

miData contains the encrypted market-impact date, code, and parameters.

Create a Kissell Research Group transaction-cost analysis object k.

k = krg(miData);

priceAppreciation

Load the example data from the MAT-file KRGExampleData.mat, which is included with
the toolbox.

load KRGExampleData
The variable TradeData appears in the MATLAB workspace.
TradeData contains these variables:

+ Shares in the transaction, which is a percentage of average daily trading volume
* Number of shares

* Average daily volume

* Percentage of volume

* Trade time in percentage of the day

* Volatility

+ Stock price

+ Alpha estimate

For a description of the example data, see “Kissell Research Group Example Data Set
Description” on page 3-9.

Estimate alpha using the Kissell Research Group transaction-cost analysis object K.
Display the first three alphas.

alpha = priceAppreciation(k,TradeData);

alpha(1:3)
ans =
-9.49
8.47
0.93

Alphas display in basis points.

. “Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-19
. “Optimize Percentage of Volume Trading Strategy” on page 3-28
. “Optimize Trade Time Trading Strategy” on page 3-32

5-351

5 Functions — Alphabetical List
P

5-352

. “Optimize Trade Schedule Trading Strategy” on page 3-36

Input Arguments

k — Transaction cost analysis
KRG object

Transaction cost analysis, specified as a KRG object created using krg.

trade — Trade data
table | structure

Trade data that describes the stocks in the transaction, specified as a table or structure.
trade must contain these variable or field names.

Variable or Field Name

Description

Size Shares in the transaction, which is a
percentage of average daily trading volume

Shares Number of shares

ADV Average daily volume

POV Percentage of volume

TradeTime Trade time in percentage of the day

Volatility Volatility

Price Stock price

Alpha_bp Alpha estimate in basis points

The trading cost varies with the trade strategy. priceAppreciation determines the
trade strategy using these variables in this order:

1 Percentage of volume
2 Trade time
3 Trade schedule

To change the trade strategy from percentage of volume to trade time, remove the
variable POV in the table and add the variable TradeTime with trade time data.

priceAppreciation

To use the trade schedule strategy, remove the variable TradeTime and add the
TradeSchedule and VolumeProfile variables.

If you specify size in the trade data, priceAppreciation uses the Size variable.
Otherwise, priceAppreciation uses the variables ADV and Shares to determine the
size.

Example: trade =
table(0.01,9300,860000,0.17,0.40,0.27,29.68,3, "VariableNames",
{"Size" "Shares® “ADV" "POV® “TradeTime" “Volatility® "Price"

"Alpha_bp*})

Example: trade =
struct("Size",0.01, "Shares*,9300, "ADV*",860000, "POV*",0.17, "TradeTime",0.40, "Vol

These examples do not represent real market data.

Data Types: struct | table

Output Arguments

alpha — Alpha

vector

Alpha, returned as a vector. The units of alpha, or the natural price movement of the
stock, are basis points.

More About

Price Appreciation

Price appreciation (PA) estimates the trading cost due to the natural price movement of a
stock.

The natural price movement commonly refers to expected return, alpha, price trend,
drift, or momentum. This movement represents how the stock moves in a market without
any uncertainty. PA represents the trading cost due to the underlying trading strategy.
For example, buying passively in a rising market or selling passively in a falling market
causes the fund to incur higher costs due to market movement. Conversely, buying in

a falling market or selling in a rising market causes the fund to incur lower costs due

5-353

5 Functions — Alphabetical List

5-354

to transacting at the better prices. PA is based on the alpha estimate you specify in
the trade data. Funds and managers heavily guard their alpha estimates and expected
returns. These expectations are highly proprietary and valued. This function lets you
input alpha estimates directly into the model running on your desktop that prevents
information leakage.

The PA model is represented as a linear trend. The PA model is

PA = 0.5~Alpha_bp~(S:grésj-(l;g(‘)fvj

Shares are the number of shares to trade. ADV is the average daily volume of a stock.
POV is the percent of market volume, or participation fraction, for the order. Alpha_bp
is the alpha estimate for the day in basis points. A positive value for the alpha estimate
indicates adverse price movement for the order. A negative value for the alpha estimate
indicates favorable price movement.

Tips

+ For details about the formula and calculations, contact the Kissell Research Group.

References

[1] Kissell, Robert. “A Practical Framework for Transaction Cost Analysis.” Journal of
Trading. Vol. 3, Number 2, Summer 2008, pp. 29-37.

[2] Kissell, Robert. “Algorithmic Trading Strategies.” Ph.D. Thesis. Fordham University,
May 2006.

[3] Kissell, Robert. “T'CA in the Investment Process: An Overview.” Journal of Index
Investing. Vol. 2, Number 1, Summer 2011, pp. 60-64.

[4] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.
Elsevier/Academic Press, 2013.

[56] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. AMACOM, Inc.,
2003.

See Also

iStar | krg | liquidityFactor | marketImpact | timingRisk

priceAppreciation

Introduced in R2016a

5-355

5 Functions — Alphabetical List
P

5-356

timingRisk

Estimate uncertainty of market-impact cost

Syntax

tr = timingRisk(k,trade)

Description

tr = timingRisk(k,trade) returns the uncertainty of the market-impact cost
estimate, or timing risk. timingRisk uses the Kissell Research Group (KRG)
transaction-cost analysis object K and trade data trade.

Examples

Estimate Timing Risk for Stocks

Retrieve the market-impact data from the Kissell Research Group FTP site.
Connect to the FTP site using the Ftp function with a user name and password.
Navigate to the Ml _Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file.

f = fep("ftp.kissellresearch.com®, "username”, "pwd");

cd(F, "MI_Parameters®);
mget(F, "MI_Encrypted_Parameters.csv®);

miData = readtable("MI_Encrypted_Parameters.csv®,"delimiter”,
",","ReadRowNames” , false, "ReadVariableNames"” ,true);

miData contains the encrypted market-impact date, code, and parameters.
Create a Kissell Research Group transaction-cost analysis object k.
k = krg(miData);

Load the example data from the MAT-file KRGExampleData.mat, which is included with
the toolbox.

timingRisk

load KRGExampleData
The variable TradeData appears in the MATLAB workspace.

TradeData contains these variables:

+ Stock symbol

+ Side

* Number of shares

* Size

+ Stock price

+ Average daily volume
+ Volatility

* Percentage of volume

For a description of the example data, see “Kissell Research Group Example Data Set
Description” on page 3-9.

Estimate timing risk tr for each stock using the Kissell Research Group transaction-cost
analysis object K. Display the first three timing risk values.

tr = timingRisk(k,TradeData);

tr(1:3)
ans =
159.05
242 .37
62.88

Timing risk trading costs display in basis points.

. “Analyze Trading Execution Results” on page 3-2

. “Estimate Portfolio Liquidation Costs” on page 3-23

. “Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-19
. “Optimize Percentage of Volume Trading Strategy” on page 3-28

. “Optimize Trade Time Trading Strategy” on page 3-32

5-357

5 Functions — Alphabetical List
P

5-358

. “Optimize Trade Schedule Trading Strategy” on page 3-36

Input Arguments

k — Transaction cost analysis
KRG object

Transaction cost analysis, specified as a KRG object created using krg.

trade — Trade data
table | structure

Trade data that describes the stocks in the transaction, specified as a table or structure.
trade must contain these variable or field names.

Variable or Field Name Description

Symbol Stock symbol

Side Buy or sell side

Shares Number of shares in the transaction
Size Shares in the transaction, which is a

percentage of average daily trading volume

Price Stock price

ADV Average daily volume
Volatility Volatility

POV Percentage of volume

The trading cost varies with the trade strategy. timingRisk determines the trade
strategy using these variables in this order:

1 Percentage of volume
2 Trade time
3 Trade schedule

To change the trade strategy from percentage of volume to trade time, remove the
variable POV in the table and add the variable TradeTime with trade time data.
To use the trade schedule strategy, remove the variable TradeTime and add the
TradeSchedule and VolumeProfi le variables.

timingRisk

If you specify size in the trade data, timingRisk uses the Size variable. Otherwise,
timingRisk uses the variables ADV and Shares to determine the size.

For example, to create trade data as a table, enter:

trade = table({"XYZ"},{"Buy~"},9300,0.06,29.68,860000,0.27,0.17, ...
"VariableNames® ,{"Symbol" "Side" "Shares®" "Size" "Price" "ADV" "Volatility" "POV"})

To create trade data as a structure, enter:

trade.Symbol = {"XYZ"};
trade.Side = {"Buy"};
trade.Shares = 9300;
trade.Size = 0.06;
trade.Price = 29.68;
trade.ADV = 860000;
trade.Volatility = 0.27;
trade.POV = 0.17;

These examples do not represent real market data.

Data Types: struct | table

Output Arguments

tr — Timing risk
vector

Timing risk, returned as a vector. The vector values correspond to the timing risk in
basis points for each stock in trade.

More About

Timing Risk

Timing risk (TR) estimates the uncertainty surrounding the estimated transaction cost.
Price volatility and liquidity risk creates uncertainty. Price volatility causes the price to

be either higher or lower than expected due to factors independent of the order. Liquidity
risk causes the market-impact cost to be either higher or lower than estimated due to

5-359

5 Functions — Alphabetical List
P

5-360

market volumes. TR is dependent upon volumes, intraday trading patterns, and market
impact resulting from other market participants. The TR model is

TR=0-\/1 1 Shares (1—POVJ.1O4'

3250 ADV | POV

o 1is price volatility. 250 is the number of trading days in the year. Shares are the
number of shares to trade. ADV is the average daily volume of the stock. POV is the
percentage of market volume, or participation fraction, of the order.

Tips

+ For details about the formula and calculations, contact the Kissell Research Group.

References

[1] Kissell, Robert. “A Practical Framework for Transaction Cost Analysis.” Journal of
Trading. Vol. 3, Number 2, Summer 2008, pp. 29-37.

[2] Kissell, Robert. “Algorithmic Trading Strategies.” Ph.D. Thesis. Fordham University,
May 2006.

[3] Kissell, Robert. “T'CA in the Investment Process: An Overview.” Journal of Index
Investing. Vol. 2, Number 1, Summer 2011, pp. 60-64.

[4] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.
Elsevier/Academic Press, 2013.

[5] Glantz, Morton, and Robert Kissell. Multi-Asset Risk Modeling. Elsevier/Academic
Press, 2013.

[6] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. AMACOM, Inc.,
2003.

See Also

iStar | krg | liquidityFactor | marketImpact | priceAppreciation

Introduced in R2016a

